期刊论文详细信息
BMC Medical Genomics
Identification of a prognostic signature for old-age mortality by integrating genome-wide transcriptomic data with the conventional predictors: the Vitality 90+ Study
Mikko Hurme3  Marja Jylhä2  Antti Hervonen2  Saara Marttila1  Jani Raitanen4  Juulia Jylhävä1 
[1] Gerontology Research Center, University of Tampere, Tampere, Finland;School of Health Sciences, University of Tampere, Tampere, Finland;Fimlab Laboratories, Tampere, Finland;UKK Institute for Health Promotion Research, Tampere, Finland
关键词: Penalized regression;    Cox model;    Biomarkers;    Transcriptomics;    Aging;    Mortality;   
Others  :  1090466
DOI  :  10.1186/1755-8794-7-54
 received in 2014-06-12, accepted in 2014-09-08,  发布年份 2014
PDF
【 摘 要 】

Background

Prediction models for old-age mortality have generally relied upon conventional markers such as plasma-based factors and biophysiological characteristics. However, it is unknown whether the existing markers are able to provide the most relevant information in terms of old-age survival or whether predictions could be improved through the integration of whole-genome expression profiles.

Methods

We assessed the predictive abilities of survival models containing only conventional markers, only gene expression data or both types of data together in a Vitality 90+ study cohort consisting of n = 151 nonagenarians. The all-cause death rate was 32.5% (49 of 151 individuals), and the median follow-up time was 2.55 years.

Results

Three different feature selection models, the penalized Lasso and Ridge regressions and the C-index boosting algorithm, were used to test the genomic data. The Ridge regression model incorporating both the conventional markers and transcripts outperformed the other models. The multivariate Cox regression model was used to adjust for the conventional mortality prediction markers, i.e., the body mass index, frailty index and cell-free DNA level, revealing that 331 transcripts were independently associated with survival. The final mortality-predicting transcriptomic signature derived from the Ridge regression model was mapped to a network that identified nuclear factor kappa beta (NF-κB) as a central node.

Conclusions

Together with the loss of physiological reserves, the transcriptomic predictors centered around NF-κB underscored the role of immunoinflammatory signaling, the control of the DNA damage response and cell cycle, and mitochondrial functions as the key determinants of old-age mortality.

【 授权许可】

   
2014 Jylhävä et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128161133320.pdf 428KB PDF download
Figure 2. 92KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Baylis D, Bartlett DB, Patel HP, Roberts HC: Understanding how we age: insights into inflammaging. Longev Healthspan 2013, 2:8. BioMed Central Full Text
  • [2]Shaw AC, Goldstein DR, Montgomery RR: Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013, 13:875-887.
  • [3]Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group: Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001, 56:M146-M156.
  • [4]Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S: Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007, 128:92-105.
  • [5]Jylha M, Paavilainen P, Lehtimaki T, Goebeler S, Karhunen PJ, Hervonen A, Hurme M: Interleukin-1 receptor antagonist, interleukin-6, and C-reactive protein as predictors of mortality in nonagenarians: the vitality 90+ study. J Gerontol A Biol Sci Med Sci 2007, 62:1016-1021.
  • [6]Giovannini S, Onder G, Liperoti R, Russo A, Carter C, Capoluongo E, Pahor M, Bernabei R, Landi F: Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc 2011, 59:1679-1685.
  • [7]Jylhava J, Jylha M, Lehtimaki T, Hervonen A, Hurme M: Circulating cell-free DNA is associated with mortality and inflammatory markers in nonagenarians: the Vitality 90+ Study. Exp Gerontol 2012, 47:372-378.
  • [8]Hubbard RE, Woodhouse KW: Frailty, inflammation and the elderly. Biogerontology 2010, 11:635-641.
  • [9]Bovelstad HM, Nygard S, Borgan O: Survival prediction from clinico-genomic models–a comparative study. BMC Bioinformatics 2009, 10:413. BioMed Central Full Text
  • [10]van Vliet MH, Horlings HM, van de Vijver MJ, Reinders MJ, Wessels LF: Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome. PLoS One 2012, 7:e40358.
  • [11]Jickling GC, Stamova B, Ander BP, Zhan X, Liu D, Sison SM, Verro P, Sharp FR: Prediction of cardioembolic, arterial, and lacunar causes of cryptogenic stroke by gene expression and infarct location. Stroke 2012, 43:2036-2041.
  • [12]Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM, Yaghootkar H, Dutta A, Murray A, Frayling TM, Guralnik JM, Bandinelli S, Singleton A, Ferrucci L, Melzer D: Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 2011, 10:868-878.
  • [13]Marttila S, Jylhava J, Nevalainen T, Nykter M, Jylha M, Hervonen A, Tserel L, Peterson P, Hurme M: Transcriptional analysis reveals gender-specific changes in the aging of the human immune system. PLoS One 2013, 8:e66229.
  • [14]Passtoors WM, Boer JM, Goeman JJ, Akker EB, Deelen J, Zwaan BJ, Scarborough A, Breggen R, Vossen RH, Houwing-Duistermaat JJ, Ommen GJ, Westendorp RG, van Heemst D, de Craen AJ, White AJ, Gunn DA, Beekman M, Slagboom PE: Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS One 2012, 7:e27759.
  • [15]Jylhava J, Nevalainen T, Marttila S, Jylha M, Hervonen A, Hurme M: Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 2013, 12:388-397.
  • [16]Kallio MA, Tuimala JT, Hupponen T, Klemela P, Gentile M, Scheinin I, Koski M, Kaki J, Korpelainen EI: Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 2011, 12:507. BioMed Central Full Text
  • [17]Marttila S, Jylhava J, Pesu M, Hamalainen S, Jylha M, Hervonen A, Hurme M: IL-7 concentration is increased in nonagenarians but is not associated with markers of T cell immunosenescence. Exp Gerontol 2011, 46:1000-1002.
  • [18]Tiainen K, Hurme M, Hervonen A, Luukkaala T, Jylha M: Inflammatory markers and physical performance among nonagenarians. J Gerontol A Biol Sci Med Sci 2010, 65:658-663.
  • [19]Vittinghoff E, McCulloch CE: Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 2007, 165:710-718.
  • [20]Hoerl AE, Kennard RW: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
  • [21]Verweij PJ, Van Houwelingen HC: Penalized likelihood in Cox regression. Stat Med 1994, 13:2427-2436.
  • [22]van Houwelingen HC, Bruinsma T, Hart AA, Van’t Veer LJ, Wessels LF: Cross-validated Cox regression on microarray gene expression data. Stat Med 2006, 25:3201-3216.
  • [23]Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996, 58:267-288.
  • [24]Mayr A, Schmid M: Boosting the concordance index for survival data–a unified framework to derive and evaluate biomarker combinations. PLoS One 2014, 9:e84483.
  • [25]Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA: Evaluating the yield of medical tests. JAMA 1982, 247:2543-2546.
  • [26]Remouchamps C, Boutaffala L, Ganeff C, Dejardin E: Biology and signal transduction pathways of the Lymphotoxin-alphabeta/LTbetaR system. Cytokine Growth Factor Rev 2011, 22:301-310.
  • [27]Aldhamen YA, Appledorn DM, Seregin SS, Liu CJ, Schuldt NJ, Godbehere S, Amalfitano A: Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens. J Immunol 2011, 186:722-732.
  • [28]Feng JM, Hu YK, Xie LH, Colwell CS, Shao XM, Sun XP, Chen B, Tang H, Campagnoni AT: Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 2006, 24:717-727.
  • [29]Gewurz BE, Towfic F, Mar JC, Shinners NP, Takasaki K, Zhao B, Cahir-McFarland ED, Quackenbush J, Xavier RJ, Kieff E: Genome-wide siRNA screen for mediators of NF-kappaB activation. Proc Natl Acad Sci U S A 2012, 109:2467-2472.
  • [30]Vairapandi M, Balliet AG, Hoffman B, Liebermann DA: GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 2002, 192:327-338.
  • [31]Stolz A, Ertych N, Bastians H: Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability. Clin Cancer Res 2011, 17:401-405.
  • [32]Schlattner U, Tokarska-Schlattner M, Ramirez S, Bruckner A, Kay L, Polge C, Epand RF, Lee RM, Lacombe ML, Epand RM: Mitochondrial kinases and their molecular interaction with cardiolipin. Biochim Biophys Acta 2009, 1788:2032-2047.
  • [33]Jonckheere AI, Smeitink JA, Rodenburg RJ: Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012, 35:211-225.
  • [34]Laurance S, Lemarie CA, Blostein MD: Growth arrest-specific gene 6 (gas6) and vascular hemostasis. Adv Nutr 2012, 3:196-203.
  • [35]Booth SL: Roles for vitamin K beyond coagulation. Annu Rev Nutr 2009, 29:89-110.
  • [36]Kerber RA, O’Brien E, Cawthon RM: Gene expression profiles associated with aging and mortality in humans. Aging Cell 2009, 8:239-250.
  • [37]van den Akker EB, Passtoors WM, Jansen R, van Zwet EW, Goeman JJ, Hulsman M, Emilsson V, Perola M, Willemsen G, Penninx BW, Heijmans BT, Maier AB, Boomsma DI, Kok JN, Slagboom PE, Reinders MJ, Beekman M: Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. Aging Cell 2014, 13:216-225.
  • [38]Johnson SC, Rabinovitch PS, Kaeberlein M: mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493:338-345.
  • [39]Salminen A, Kaarniranta K: NF-kappaB signaling in the aging process. J Clin Immunol 2009, 29:397-405.
  文献评价指标  
  下载次数:31次 浏览次数:41次