期刊论文详细信息
BMC Genomics
Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae
W. Kelley Thomas4  Eyualem Abebe1  Philip J. Hatcher3  Vaughn S. Cooper2  Louis S. Tisa2  Feseha Abebe-Akele4 
[1] Department of Biology, Elizabeth City State University, 1704 Weeksville Road, Jenkins Science Center 421, Elizabeth City 27909, NC, USA;Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA;Department of Computer Science, University of New Hampshire, Durham, NH, USA;Hubbard Center for Genome Studies, 444 Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham 03824, NH, USA
关键词: Urea pathway;    Mutualism;    EPN;    Entomopathogen;    Caenorhabditis;    Serratia;   
Others  :  1220305
DOI  :  10.1186/s12864-015-1697-8
 received in 2014-09-19, accepted in 2015-06-12,  发布年份 2015
PDF
【 摘 要 】

Background

Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity.

Results

We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99 % sequence identity in rDNA sequence and orthology across 85.6 % of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8 %) were present in Serratia while 33 (84.6 %) and 35 (89 %) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively.

Conclusion

The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result – killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

【 授权许可】

   
2015 Abebe-Akele et al.

【 预 览 】
附件列表
Files Size Format View
20150722020825550.pdf 2297KB PDF download
Fig. 5. 31KB Image download
Fig. 4. 74KB Image download
Fig. 3. 65KB Image download
Fig. 2. 40KB Image download
Fig. 1. 124KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Abebe E, Akele FA, Morrison J, Cooper V, Thomas WK. An insect pathogenic symbiosis between a Caenorhabditis and Serratia. Virulence. 2011; 2(2):158-161.
  • [2]Abebe E, Jumba M, Bonner K, Gray V, Morris K, Thomas WK. An entomopathogenic Caenorhabditis briggsae. J Exp Biol. 2010; 213(18):3223-3229.
  • [3]Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria - Insights from the society of infectious diseases pharmacists. Pharmacotherapy. 2003; 23(7):916-924.
  • [4]Alberti L, Harshey RM. Differentiation of Serratia-Marcescens 274 into Swimmer and Swarmer Cells. J Bacteriol. 1990; 172(8):4322-4328.
  • [5]Allen AE, CL Dupont, M Obornik, A Horak, A Nunes-Nesi, JP McCrow, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 2011;473(7346):203−+.
  • [6]Allen AE, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms. Mol Biol Evol. 2012; 29(1):367-379.
  • [7]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol. 1990; 215(3):403-410.
  • [8]Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, et al. The Defective Prophage Pool of Escherichia coli O157: Prophage-Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants. Plos Pathogens. 2009;5(5).
  • [9]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: Rapid annotations using subsystems technology. Bmc Genomics. 2008;9.
  • [10]Azpiroz MF, Rodriguez E, Lavina M. The structure, function, and origin of the microcin H47 ATP-binding cassette exporter indicate its relatedness to that of colicin V. Antimicrob Agents Chemother. 2001; 45(3):969-972.
  • [11]Bai YM, Souleimanov A, Smith DL. An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions. J Exp Bot. 2002; 53(373):1495-1502.
  • [12]Bennett HPJ, Clarke DJ. The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. J Bacteriol. 2005; 187(1):77-84.
  • [13]Bhadra B, Roy P, Chakraborty R. Serratia ureilytica sp nov., a novel urea-utilizing species. Int J Syst Evol Microbiol. 2005; 55:2155-2158.
  • [14]Bina XR, Provenzano D, Nguyen N, Bina JE. Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun. 2008; 76(8):3595-3605.
  • [15]Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol. 2009; 13(2):224-230.
  • [16]Bovien P. Some types of association between nematodes and insects. Videnskabelige Meddelelser Fra Dansk Naturhistorisk Forening, ed. P. Bovien, Ed. . Vol. København 101. 1932, Copenhagen.
  • [17]Braun V, Schmitz G. Excretion of a protease by Serratia marcescens. Arch Microbiol. 1980; 124(1):55-61.
  • [18]Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K et al.. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol Microbiol. 2007; 65(5):1334-44.
  • [19]Brugirard-Ricaud K, Duchaud E, Givaudan A, Girard PA, Kunst F, Boemare N et al.. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol. 2005; 7(3):363-71.
  • [20]Brugirard-Ricaud K, Givaudan A, Parkhill J, Boemare N, Kunst F, Zumbihl R et al.. Variation in the effectors of the type III secretion system among Photorhabdus species as revealed by genomic analysis. J Bacteriol. 2004; 186(13):4376-4381.
  • [21]Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560−+.
  • [22]Burke GR, Moran NA. Massive Genomic Decay in Serratia symbiotica, a Recently Evolved Symbiont of Aphids. Genome Biol Evol. 2011; 3:195-208.
  • [23]Burnell AM, Stock SP. Heterorhabditis, Steinernema and their bacterial symbionts - lethal pathogens of insects. Nematology. 2000; 2:31-42.
  • [24]Chandra H, Khandelwal P, Khattri A, Banerjee N. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Environ Microbiol. 2008; 10(5):1285-1295.
  • [25]Chen YC, Shipley GL, Ball TK, Benedik MJ. Regulatory Mutants and Transcriptional Control of the Serratia-Marcescens Extracellular Nuclease Gene. Mol Microbiol. 1992; 6(5):643-651.
  • [26]Christensen-Dalsgaard M, Gerdes K. Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol. 2006; 62(2):397-411.
  • [27]Ciche TA, Bintrim SB, Horswill AR, Ensign JC. A phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J Bacteriol. 2001; 183(10):3117-3126.
  • [28]Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol. 2008; 74(8):2275-2287.
  • [29]Clarke DJ. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol. 2008; 10(11):2159-67.
  • [30]Cowles CE, Goodrich-Blair H. Characterization of a lipoprotein, NilC, required by Xenorhabdus nematophila for mutualism with its nematode host. Mol Microbiol. 2004; 54(2):464-477.
  • [31]Cowles CE, Goodrich-Blair H. nilR is necessary for co-ordinate repression of Xenorhabdus nematophila mutualism genes. Mol Microbiol. 2006; 62(3):760-771.
  • [32]Cowles KN, Cowles CE, Richards GR, Martens EC, Goodrich-Blair H. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell Microbiol. 2007; 9(5):1311-1323.
  • [33]Crawford JM, Kontnik R, Clardy J. Regulating Alternative Lifestyles in Entomopathogenic Bacteria. Curr Biol. 2010; 20(1):69-74.
  • [34]Cycon M, Wojcik M, Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp and Pseudomonas sp and their use in bioremediation of contaminated soil. Chemosphere. 2009; 76(4):494-501.
  • [35]Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004; 14(7):1394-1403.
  • [36]Darling AE, Mau B, Perna NT. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. Plos One. 2010;5(6).
  • [37]Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol. 2002; 68(8):3780-3789.
  • [38]Derzelle S, Ngo S, Turlin E, Duchaud E, Namane A, Kunst F et al.. AstR-AstS, a new two-component signal transduction system, mediates swarming, adaptation to stationary phase and phenotypic variation in Photorhabdus luminescens. Microbiology-Sgm. 2004; 150:897-910.
  • [39]Derzelle S, Turlin E, Duchaud E, Pages S, Kunst F, Givaudan A et al.. The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J Bacteriol. 2004; 186(5):1270-1279.
  • [40]Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S et al.. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003; 21(11):1307-1313.
  • [41]Dutky SR, Hough WS. Note on parasitic nematode from codling moth larvae, Carpocapsa pomonella. Proc Entomol Soc Wash. 1955;57.
  • [42]Felfoldi G, Marokhazi J, Kepiro M, Venekei I. Identification of natural target proteins indicates functions of a serralysin-type metalloprotease, PrtA, in anti-immune mechanisms. Appl Environ Microbiol. 2009; 75(10):3120-6.
  • [43]Felsenstein J. Confidence-Limits on Phylogenies - an Approach Using the Bootstrap. Evolution. 1985; 39(4):783-791.
  • [44]ffrench-Constant RH, Bowen DJ. Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci. 2000; 57(5):828-833.
  • [45]Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D et al.. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: Potential implications for virulence. Appl Environ Microbiol. 2000; 66(8):3310-3329.
  • [46]Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annu Rev Microbiol. 1997; 51:47-72.
  • [47]Givaudan A, Lanois A. flhDC, the flagellar master operon of Xenorhabdus nematophilus: Requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol. 2000; 182(1):107-115.
  • [48]Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol. 2007; 64(2):260-268.
  • [49]Grimont PA, Grimont F. The genus Serratia. Annu Rev Microbiol. 1978; 32:221-48.
  • [50]Grimont PAD, Jackson TA, Ageron E, Noonan MJ. Serratia-Entomophila Sp-Nov Associated with Amber Disease in the New-Zealand Grass Grub Costelytra-Zealandica. Int J Syst Bacteriol. 1988; 38(1):1-6.
  • [51]Grundling A, Smith DL, Blasi U, Young R. Dimerization between the holin and holin inhibitor of phage lambda. J Bacteriol. 2000; 182(21):6075-6081.
  • [52]Heungens K, Cowles CE, Goodrich-Blair H. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol. 2002; 45(5):1337-1353.
  • [53]Hinchliffe SJ, Hares MC, Dowling AJ, ffrench-Constant RH. Insecticidal Toxins from the Photorhabdus and Xenorhabdus Bacteria. Open Toxinol J. 2010; 3:18.
  • [54]Hu K, Webster JM. Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus Heterorhabditis infected Galleria mellonella larvae. Fems Microbiol Lett. 2000; 189(2):219-223.
  • [55]Hu KJ, Li JX, Li B, Webster JM, Chen GH. A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorg Med Chem. 2006; 14(13):4677-4681.
  • [56]Hurst MRH, Glare TR, Jackson TA. Cloning Serratia entomophila antifeeding genes - A putative defective prophage active against the grass grub Costelytra zealandica (vol 186, pg 5116, 2004). J Bacteriol. 2004; 186(20):7023-7024.
  • [57]Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008; 36(Web Server issue):W5-9.
  • [58]Joyce SA, Clarke DJ. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol. 2003; 47(5):1445-57.
  • [59]Joyce SA, Watson RJ, Clarke DJ. The regulation of pathogenicity and mutualism in Photorhabdus. Curr Opin Microbiol. 2006; 9(2):127-32.
  • [60]Komeda H, Kobayashi M, Shimizu S. A novel transporter involved in cobalt uptake. Proc Natl Acad Sci U S A. 1997; 94(1):36-41.
  • [61]Kurz CL, Ewbank JJ. Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol. 2000; 8(3):142-4.
  • [62]Lang AS, Beatty JT. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci U S A. 2000; 97(2):859-64.
  • [63]Lauzon CR, Bussert TG, Sjogren RE, Prokopy RJ. Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera : Tephritidae). Eur J Entomol. 2003; 100(1):87-92.
  • [64]Li XY, Tetling S, Winkler UK, Jaeger KE, Benedik MJ. Gene Cloning, Sequence-Analysis, Purification, and Secretion by Escherichia-Coli of an Extracellular Lipase from Serratia-Marcescens. Appl Environ Microbiol. 1995; 61(7):2674-2680.
  • [65]Lin CS, Horng JT, Yang CH, Tsai YH, Su LH, Wei CF et al.. RssAB-FlhDC-ShlBA as a Major Pathogenesis Pathway in Serratia marcescens. Infect Immun. 2010; 78(11):4870-4881.
  • [66]Maragakis LL, Winkler A, Tucker MG, Cosgrove SE, Ross T, Lawson E et al.. Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2008; 29(5):418-423.
  • [67]Marokhazi J, Lengyel K, Pekar S, Felfoldi G, Patthy A, Graf L et al.. Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: Strain- and phase-dependent heterogeneity in composition and activity of four enzymes. Appl Environ Microbiol. 2004; 70(12):7311-7320.
  • [68]Meslet-Cladiere LM, Pimenta A, Duchaud E, Holland IB, Blight MA. In vivo expression of the mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. J Bacteriol. 2004; 186(3):611-22.
  • [69]O'Neill KH, Roche DM, Clarke DJ, Dowds BC. The ner gene of Photorhabdus: effects on primary-form-specific phenotypes and outer membrane protein composition. J Bacteriol. 2002; 184(11):3096-105.
  • [70]Orear J, Alberti L, Harshey RM. Mutations That Impair Swarming Motility in Serratia-Marcescens-274 Include but Are Not Limited to Those Affecting Chemotaxis or Flagellar Function. J Bacteriol. 1992; 174(19):6125-6137.
  • [71]Petersen LM, Tisa LS. Influence of temperature on the physiology and virulence of the insect pathogen Serratia sp. Strain SCBI. Appl Environ Microbiol. 2012; 78(24):8840-4.
  • [72]Petersen LM, Tisa LS. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence. J Bacteriol. 2014; 196(22):3923-36.
  • [73]Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006; 19(2):382-402.
  • [74]Piddock LJV. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol. 2006; 4(8):629-636.
  • [75]Popendorf K, Tsuyoshi H, Osana Y, Sakakibara Y. Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes. PLoS One. 2010; 5(9):e12651.
  • [76]Pradel E, Ewbank JJ. Genetic models in pathogenesis. Annu Rev Genet. 2004; 38:347-63.
  • [77]Richards GR, Goodrich-Blair H. Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production. Appl Environ Microbiol. 2010; 76(1):221-9.
  • [78]Richards GR, Vivas EI, Andersen AW, Rivera-Santos D, Gilmore S, Suen G et al.. Isolation and characterization of Xenorhabdus nematophila transposon insertion mutants defective in lipase activity against Tween. J Bacteriol. 2009; 191(16):5325-31.
  • [79]Richter S. Phoretic Association between the Dauerjuveniles of Rhabditis-Stammeri (Rhabditidae) and Life-History Stages of the Burying Beetle Nicrophorus-Vespilloides (Coleoptera, Silphidae). Nematologica. 1993; 39(3):346-355.
  • [80]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000; 132:365-86.
  • [81]Sakoh M, Ito K, Akiyama Y. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J Biol Chem. 2005; 280(39):33305-33310.
  • [82]Schulenburg H, Ewbank JJ. Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. Bmc Evolution Biol. 2004;4.
  • [83]Schulte F. The Association between Rhabditis-Necromena Sudhaus and Schulte, 1989 (Nematoda, Rhabditidae) and Native and Introduced Millipedes in South-Australia. Nematologica. 1989; 35(1):82-89.
  • [84]Sergeant M, Jarrett P, Ousley M, Morgan JA. Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol. 2003; 69(6):3344-9.
  • [85]Sheets JJ, Hey TD, Fencil KJ, Burton SL, Ni W, Lang AE et al.. Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem. 2011; 286(26):22742-9.
  • [86]Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol. 2010; 77(4):1021-1038.
  • [87]Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother. 2007; 59(6):1247-60.
  • [88]Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al.. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol. 2009; 75(3):748-57.
  • [89]Tambong JT. Phylogeny of bacteria isolated from Rhabditis sp. (Nematoda) and identification of novel entomopathogenic Serratia marcescens strains. Curr Microbiol. 2013; 66(2):138-44.
  • [90]Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993; 10(3):512-26.
  • [91]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011; 28(10):2731-2739.
  • [92]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013; 30(12):2725-2729.
  • [93]Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control. 2006; 34(5):S3-S10.
  • [94]Tenover FC. Rapid detection and identification of bacterial pathogens using novel molecular technologies: Infection control and beyond. Clin Infect Dis. 2007; 44(3):418-423.
  • [95]Trujillo M, Rodriguez E, Lavina M. ATP synthase is necessary for microcin H47 antibiotic action. Antimicrob Agents Chemother. 2001; 45(11):3128-3131.
  • [96]Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. Fems Microbiol Rev. 2007; 31(4):407-424.
  • [97]Voelz A, Muller A, Gillen J, Le C, Dresbach T, Engelhart S et al.. Outbreaks of Serratia marcescens in neonatal and pediatric intensive care units: Clinical aspects, risk factors and management. Int J Hyg Environ Health. 2010; 213(2):79-87.
  • [98]von Reuss SH, Kai M, Piechulla B, Francke W. Octamethylbicyclo[3.2.1]octadienes from the Rhizobacterium Serratia odorifera. Angewandte Chemie Int Edition. 2010;49(11):2009–10.
  • [99]Wang IN, Smith DL, Young R. Holins: The protein clocks of bacteriophage infections. Annu Rev Microbiol. 2000; 54:799-825.
  • [100]Waterfield NR, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annu Rev Microbiol. 2009; 63:557-74.
  • [101]Watson RJ, Millichap P, Joyce SA, Reynolds S, Clarke DJ. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. Bmc Microbiol. 2010;10.
  • [102]Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, et al. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. Bmc Genomics. 2009;10.
  • [103]Wolfram L, Friedrich B, Eitinger T. The Alcaligenes-Eutrophus Protein Hoxn Mediates Nickel Transport in Escherichia-Coli. J Bacteriol. 1995; 177(7):1840-1843.
  • [104]Yi YK, Park HW, Shrestha S, Seo J, Kim YO, Shin CS et al.. Identification of two entomopathogenic bacteria from a nematode pathogenic to the oriental beetle, Blitopertha orientalis. J Microbiol Biotechnol. 2007; 17(6):968-978.
  • [105]Zhang CX, Yang SY, Xu MX, Sun J, Liu H, Liu JR et al.. Serratia nematodiphila sp nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). Int J Syst Evolution Microbiol. 2009; 59:1603-1608.
  文献评价指标  
  下载次数:105次 浏览次数:29次