BMC Medicine | |
Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue | |
Gema Frühbeck3  Rui Medeiros2  Carlos Lopes6  Francisco Pina4  Jorge Oliveira1  José Sanches-Magalhães1  Vitor Silva1  António Morais1  Francisco Lobo1  Carlos Lobato7  Paulo Príncipe8  Avelino Fraga8  Javier Gómez-Ambrosi3  Amaia Rodríguez3  Virgínia Cunha2  Pingzhao Hu5  Victoria Catalán3  Cátia Monteiro2  Ricardo Ribeiro2  | |
[1] Urology Department, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida 4200-072, Porto, Portugal;LPCC - Portuguese League Against Cancer (NRNorte), Est. Interior da Circunvalação 6657, 4200-177, Porto, Portugal;CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain;Urology Department, S. João Hospital, Al. Prof. Hernâni Monteiro 4200 - 319, Porto, Portugal;The Center for Applied Genomics, Hospital for Sick Children, MaRS Centre - East Tower 101 College Street, Room 15-705, Toronto, Ontario, M5G 1L7, Canada;ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal;Urology Department, D. Pedro V Military Hospital, Av. da Boavista 4150-113, Porto, Portugal;Urology Department, Porto Hospital Centre, Largo Prof. Abel Salazar 4099-001, Porto, Portugal | |
关键词: prostate cancer; periprostatic; microarray, obesity; gene expression; adipose tissue; | |
Others : 857347 DOI : 10.1186/1741-7015-10-108 |
|
received in 2012-04-27, accepted in 2012-09-25, 发布年份 2012 | |
【 摘 要 】
Background
Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients.
Methods
Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks.
Results
In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients.
Conclusions
Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.
【 授权许可】
2012 Ribeiro et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140723075521284.pdf | 1548KB | download | |
60KB | Image | download | |
56KB | Image | download | |
32KB | Image | download | |
25KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Boyle P, Ferlay J: Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005, 16:481-488.
- [2]Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003, 348:1625-1638.
- [3]Freedland SJ, Banez LL, Sun LL, Fitzsimons NJ, Moul JW: Obese men have higher-grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer Prostatic Dis 2009, 12:259-263.
- [4]van Kruijsdijk RC, van der Wall E, Visseren FL: Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 2009, 18:2569-2578.
- [5]Cheng L, Darson MF, Bergstralh EJ, Slezak J, Myers RP, Bostwick DG: Correlation of margin status and extraprostatic extension with progression of prostate carcinoma. Cancer 1999, 86:1775-1782.
- [6]van Roermund JG, Hinnen KA, Tolman CJ, Bol GH, Witjes JA, Bosch JL, Kiemeney LA, van Vulpen M: Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU Int 2011, 107:1775-1779.
- [7]Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, Zaldivar F, Santos R, Tyson DR, Ornstein DK: Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 2009, 182:1621-1627.
- [8]Ribeiro RJ, Monteiro CP, Cunha VF, Azevedo AS, Oliveira MJ, Monteiro R, Fraga AM, Principe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Guimarães JT, Lopes CM, Medeiros RM: Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem 2012, 29:233-240.
- [9]Ribeiro R, Monteiro C, Cunha V, Oliveira MJ, Freitas M, Fraga A, Principe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Pina F, Mota-Pinto A, Lopes C, Medeiros R: Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res 2012, 31:32. BioMed Central Full Text
- [10]Fruhbeck G, Gomez-Ambrosi J: Control of body weight: a physiologic and transgenic perspective. Diabetologia 2001, 46:143-172.
- [11]Gomez-Ambrosi J, Catalan V, Diez-Caballero A, Martinez-Cruz LA, Gil MJ, Garcia-Foncillas J, Cienfuegos JA, Salvador J, Mato JM, Fruhbeck G: Gene expression profile of omental adipose tissue in human obesity. FASEB J 2004, 18:215-217.
- [12]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.
- [13]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
- [14]Reiner-Benaim A, Yekutieli D, Letwin NE, Elmer GI, Lee NH, Kafkafi N, Benjamini Y: Associating quantitative behavioral traits with gene expression in the brain: searching for diamonds in the hay. Bioinformatics 2007, 23:2239-2246.
- [15]Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F: Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011, 19:888-892.
- [16]Catalan V, Gomez-Ambrosi J, Rotellar F, Silva C, Rodriguez A, Salvador J, Gil MJ, Cienfuegos JA, Fruhbeck G: Validation of endogenous control genes in human adipose tissue: relevance to obesity and obesity-associated type 2 diabetes mellitus. Horm Metab Res 2007, 39:495-500.
- [17]Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Rotellar F, Valenti V, Silva C, Gil MJ, Fernandez-Real JM, Salvador J, Fruhbeck G: Increased levels of calprotectin in obesity are related to macrophage content. Impact on inflammation and effect of weight loss. Mol Med 2011, 17:1157-1167.
- [18]Valastyan S, Weinberg RA: Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147:275-292.
- [19]Serradeil-Le Gal C, Lafontan M, Raufaste D, Marchand J, Pouzet B, Casellas P, Pascal M, Maffrand JP, Le Fur G: Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. FEBS Lett 2000, 475:150-156.
- [20]Fruhbeck G, Aguado M, Martinez JA: In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin. Biochem Biophys Res Commun 1997, 240:590-594.
- [21]Aversa A, Caprio M, Antelmi A, Armani A, Brama M, Greco EA, Francomano D, Calanchini M, Spera G, Di Luigi L, Rosano GM, Lenzi A, Migliaccio S, Fabbri A: Exposure to phosphodiesterase type 5 inhibitors stimulates aromatase expression in human adipocytes in vitro. J Sex Med 2011, 8:696-704.
- [22]Baulande S, Lasnier F, Lucas M, Pairault J: Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem 2001, 276:33336-33344.
- [23]Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair MG, Peters JM, Busik JV, Olson LK, Jump DB: Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 2006, 47:2028-2041.
- [24]Fullerton MD, Hakimuddin F, Bakovic M: Developmental and metabolic effects of disruption of the mouse CTP:phosphoethanolamine cytidylyltransferase gene (Pcyt2). Mol Cell Biol 2007, 27:3327-3336.
- [25]Dallabrida SM, Zurakowski D, Shih SC, Smith LE, Folkman J, Moulton KS, Rupnick MA: Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem Biophys Res Commun 2003, 311:563-571.
- [26]Hu Z, Chen L, Zhang J, Li T, Tang J, Xu N, Wang X: Structure, function, property, and role in neurologic diseases and other diseases of the sHsp22. J Neurosci Res 2007, 85:2071-2079.
- [27]Sun Z, Cheng Z, Taylor CA, McConkey BJ, Thompson JE: Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway. J Cell Physiol 2010, 223:798-809.
- [28]Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC, Madge LA, Schechner JS, Schwabb MB, Polverini PJ, Flores-Riveros JR: Biological action of leptin as an angiogenic factor. Science 1998, 281:1683-1686.
- [29]Joo HJ, Kim H, Park SW, Cho HJ, Kim HS, Lim DS, Chung HM, Kim I, Han YM, Koh GY: Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood 2011, 118:2094-2104.
- [30]Park J, Scherer PE: Leptin and cancer: from cancer stem cells to metastasis. Endocr Relat Cancer 2011, 18:C25-29.
- [31]Yang K, Guan H, Arany E, Hill DJ, Cao X: Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J 2008, 22:2452-2464.
- [32]Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011, 17:1498-1503.
- [33]Ribeiro R, Lopes C, Medeiros R: The link between obesity and prostate cancer: the leptin pathway and therapeutic perspectives. Prostate Cancer Prostatic Dis 2006, 9:19-24.
- [34]Price RS, Cavazos DA, De Angel RE, Hursting SD, Degraffenried LA: Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells. Prostate Cancer Prostatic Dis 2012, 15:135-143.
- [35]Harvey AE, Lashinger LM, Hursting SD: The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci 2011, 1229:45-52.
- [36]Ribeiro R, Araujo A, Lopes C, Medeiros R: Immunoinflammatory mechanisms in lung cancer development: is leptin a mediator? J Thorac Oncol 2007, 2:105-108.
- [37]Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, Mackay F: A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 2005, 202:1527-1538.
- [38]Thompson C, Cloutier A, Bosse Y, Poisson C, Larivee P, McDonald PP, Stankova J, Rola-Pleszczynski M: Signaling by the cysteinyl-leukotriene receptor 2. Involvement in chemokine gene transcription. J Biol Chem 2008, 283:1974-1984.
- [39]Simopoulos AP: Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med (Maywood) 2010, 235:785-795.
- [40]Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG: The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010, 120:2156-2170.
- [41]Hoon Kim J, Lee SY, Myung SC, Kim YS, Kim TH, Kim MK: Clinical significance of the leptin and leptin receptor expressions in prostate tissues. Asian J Androl 2008, 10:923-928.
- [42]Wurmbach JH, Hammerer P, Sevinc S, Huland H, Ergun S: The expression of angiopoietins and their receptor Tie-2 in human prostate carcinoma. Anticancer Res 2000, 20:5217-5220.
- [43]Satoh N, Yamada Y, Kinugasa Y, Takakura N: Angiopoietin-1 alters tumor growth by stabilizing blood vessels or by promoting angiogenesis. Cancer Sci 2008, 99:2373-2379.
- [44]O'Carroll SJ, Mitchell MD, Faenza I, Cocco L, Gilmour RS: Nuclear PLCbeta1 is required for 3T3-L1 adipocyte differentiation and regulates expression of the cyclin D3-cdk4 complex. Cell Signal 2009, 21:926-935.
- [45]Zhou W, Wang X, Li L, Feng X, Yang Z, Zhang W, Hu R: Depletion of tubulin polymerization promoting protein family member 3 suppresses HeLa cell proliferation. Mol Cell Biochem 2010, 333:91-98.
- [46]Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G: The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci USA 2009, 106:6998-7003.
- [47]Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M: Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 2010, 70:1668-1678.
- [48]Konishi M, Mikami T, Yamasaki M, Miyake A, Itoh N: Fibroblast growth factor-16 is a growth factor for embryonic brown adipocytes. J Biol Chem 2000, 275:12119-12122.
- [49]Wang J, Gu Q, Li M, Zhang W, Yang M, Zou B, Chan S, Qiao L, Jiang B, Tu S, Ma J, Hung IF, Lan HY, Wong BC: Identification of XAF1 as a novel cell cycle regulator through modulating G(2)/M checkpoint and interaction with checkpoint kinase 1 in gastrointestinal cancer. Carcinogenesis 2009, 30:1507-1516.
- [50]Cho HJ, Park SM, Hwang EM, Baek KE, Kim IK, Nam IK, Im MJ, Park SH, Bae S, Park JY, Yoo J: Gadd45b mediates Fas-induced apoptosis by enhancing the interaction between p38 and retinoblastoma tumor suppressor. J Biol Chem 2010, 285:25500-25505.
- [51]Arora V, Cheung HH, Plenchette S, Micali OC, Liston P, Korneluk RG: Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem 2007, 282:26202-26209.
- [52]Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126:121-134.
- [53]Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ: MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009, 23:925-931.
- [54]Yang TT, Yu RY, Agadir A, Gao GJ, Campos-Gonzalez R, Tournier C, Chow CW: Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4. Mol Cell Biol 2008, 28:3489-3501.
- [55]Hirano T, Morii H, Nakazawa K, Murakami D, Yamashita A, Asahi J, Orimo H, Tamae K, Tokura Y: Enhancement of adipogenesis induction by conditioned media obtained from cancer cells. Cancer Lett 2008, 268:286-294.
- [56]Wilczek E, Rzepko R, Nowis D, Legat M, Golab J, Glab M, Gorlewicz A, Konopacki F, Mazurkiewicz M, Sladowski D, Gornicka B, Wasiutynski A, Wilczynski GM: The possible role of factor H in colon cancer resistance to complement attack. Int J Cancer 2008, 122:2030-2037.
- [57]Choy LN, Spiegelman BM: Regulation of alternative pathway activation and C3a production by adipose cells. Obes Res 1996, 4:521-532.
- [58]Tedder TF, Engel P: CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994, 15:450-454.
- [59]Nilsson NE, Kotarsky K, Owman C, Olde B: Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003, 303:1047-1052.
- [60]Gunzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Muller D: Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 2009, 122:1507-1517.