期刊论文详细信息
BMC Medicine
The sweet and sour of serological glycoprotein tumor biomarker quantification
Eleftherios P Diamandis1  Hari Kosanam1  Uros Kuzmanov2 
[1] Department of Clinical Biochemistry, University Health Network, 6th Floor, 60 Murray Street, Box 32, Toronto, ON M5T 3L9, Canada;Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 6th Floor, 60 Murray Street, Box 32, Toronto, ON M5T 3L9, Canada
关键词: sialic acid.;    ovarian cancer;    N-glycosylation;    mass spectrometry;    lectin ELISA;    lectin;    glycopeptide;    glycobiomarker;   
Others  :  857200
DOI  :  10.1186/1741-7015-11-31
 received in 2012-07-04, accepted in 2013-02-07,  发布年份 2013
PDF
【 摘 要 】

Aberrant and dysregulated protein glycosylation is a well-established event in the process of oncogenesis and cancer progression. Years of study on the glycobiology of cancer have been focused on the development of clinically viable diagnostic applications of this knowledge. However, for a number of reasons, there has been only sparse and varied success. The causes of this range from technical to biological issues that arise when studying protein glycosylation and attempting to apply it to practical applications. This review focuses on the pitfalls, advances, and future directions to be taken in the development of clinically applicable quantitative assays using glycan moieties from serum-based proteins as analytes. Topics covered include the development and progress of applications of lectins, mass spectrometry, and other technologies towards this purpose. Slowly but surely, novel applications of established and development of new technologies will eventually provide us with the tools to reach the ultimate goal of quantification of the full scope of heterogeneity associated with the glycosylation of biomarker candidate glycoproteins in a clinically applicable fashion.

【 授权许可】

   
2013 Kuzmanov et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723071927778.pdf 825KB PDF download
38KB Image download
35KB Image download
93KB Image download
【 图 表 】

【 参考文献 】
  • [1]Cunningham S, Gerlach JQ, Kane M, Joshi L: Glyco-biosensors: Recent advances and applications for the detection of free and bound carbohydrates. Analyst 2010, 135:2471-2480.
  • [2]Dalpathado DS, Desaire H: Glycopeptide analysis by mass spectrometry. Analyst 2008, 133:731-738.
  • [3]Reinders J, Sickmann A: Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 2007, 24:169-177.
  • [4]Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr: Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005, 44:7342-7372.
  • [5]Crocker PR, Feizi T: Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr Opin Struct Biol 1996, 6:679-691.
  • [6]Feizi T: Carbohydrate-mediated recognition systems in innate immunity. Immunol Rev 2000, 173:79-88.
  • [7]Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H: Chemical biology of the sugar code. Chembiochem 2004, 5:740-764.
  • [8]Helenius A, Aebi M: Intracellular functions of N-linked glycans. Science 2001, 291:2364-2369.
  • [9]Karlsson KA: Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol Microbiol 1998, 29:1-11.
  • [10]Apweiler R, Hermjakob H, Sharon N: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999, 1473:4-8.
  • [11]Cummings RD: The repertoire of glycan determinants in the human glycome. Mol Biosyst 2009, 5:1087-1104.
  • [12]Schachter H, Freeze HH: Glycosylation diseases: quo vadis? Biochim Biophys Acta 2009, 1792:925-930.
  • [13]Spiro RG: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12:43R-56R.
  • [14]Meezan E, Wu HC, Black PH, Robbins PW: Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry 1969, 8:2518-2524.
  • [15]Wu HC, Meezan E, Black PH, Robbins PW: Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine-labeling patterns in 3T3, spontaneously transformed 3T3, and SV-40-transformed 3T3 cells. Biochemistry 1969, 8:2509-2517.
  • [16]Brooks SA: Strategies for analysis of the glycosylation of proteins: current status and future perspectives. Mol Biotechnol 2009, 43:76-88.
  • [17]Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, Regnier FE, Gibson BW, Fisher SJ: Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2010, 56:223-236.
  • [18]Arnold JN, Saldova R, Hamid UM, Rudd PM: Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 2008, 8:3284-3293.
  • [19]Dennis JW, Granovsky M, Warren CE: Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1999, 1473:21-34.
  • [20]Dube DH, Bertozzi CR: Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005, 4:477-488.
  • [21]Gorelik E, Galili U, Raz A: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev 2001, 20:245-277.
  • [22]Hakomori S: Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 2002, 99:10231-10233.
  • [23]Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW: Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 2000, 6:306-312.
  • [24]Guo HB, Lee I, Kamar M, Pierce M: N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways. J Biol Chem 2003, 278:52412-52424.
  • [25]Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J: Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res 2005, 11:2969-2973.
  • [26]Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J: The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet 2009, 18:2599-2608.
  • [27]Takahashi M, Kuroki Y, Ohtsubo K, Taniguchi N: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res 2009, 344:1387-1390.
  • [28]Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H: An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999, 9:1307-1311.
  • [29]Meany D, Chan D: Aberrant glycosylation associated with enzymes as cancer biomarkers. Clinical Proteomics 2011, 8:7. BioMed Central Full Text
  • [30]Ogawa JI, Inoue H, Koide S: alpha-2,3-Sialyltransferase type 3N and alpha-1,3-fucosyltransferase type VII are related to sialyl Lewis(x) synthesis and patient survival from lung carcinoma. Cancer 1997, 79:1678-1685.
  • [31]Petretti T, Kemmner W, Schulze B, Schlag PM: Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 2000, 46:359-366.
  • [32]Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 2010, 20:1241-1250.
  • [33]Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 1998, 58:4066-4070.
  • [34]Fukushima K, Satoh T, Baba S, Yamashita K: alpha1,2-Fucosylated and beta-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 2010, 20:452-460.
  • [35]Jankovic MM, Milutinovic BS: Glycoforms of CA125 antigen as a possible cancer marker. Cancer Biomark 2008, 4:35-42.
  • [36]Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman UH: Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography--electrospray mass spectrometry. Glycobiology 2006, 16:1207-1218.
  • [37]Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y: Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer 2012, 131:117-128.
  • [38]Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 2010, 277:95-105.
  • [39]Pan S, Chen R, Aebersold R, Brentnall TA: Mass spectrometry based glycoproteomics - from a proteomics perspective. Mol Cell Proteomics 2011., 10
  • [40]Hua S, An HJ: Glycoscience aids in biomarker discovery. BMB Rep 2012, 45:323-330.
  • [41]Adamczyk B, Tharmalingam T, Rudd PM: Glycans as cancer biomarkers. Biochim Biophys Acta 2011.
  • [42]Goonetilleke KS, Siriwardena AK: Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 2007, 33:266-270.
  • [43]Donati M, Brancato G, Donati A: Clinical biomarkers in hepatocellular carcinoma (HCC). Front Biosci (Schol Ed) 2010, 2:571-577.
  • [44]Li D, Mallory T, Satomura S: AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 2001, 313:15-19.
  • [45]Gamblin DP, Scanlan EM, Davis BG: Glycoprotein synthesis: an update. Chem Rev 2009, 109:131-163.
  • [46]Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens R: Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 2003, 13:457-470.
  • [47]Anderson NL, Anderson NG: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1:845-867.
  • [48]Sharon N, Lis H: History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004, 14:53R-62R.
  • [49]Bies C, Lehr CM, Woodley JF: Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 2004, 56:425-435.
  • [50]Sharon N, Lis H: Lectins: cell-agglutinating and sugar-specific proteins. Science 1972, 177:949-959.
  • [51]McCoy JP Jr, Varani J, Goldstein IJ: Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal Biochem 1983, 130:437-444.
  • [52]McCoy JP Jr, Goldstein IJ, Varani J: A review of studies in our laboratory regarding ELLA methodology for the study of cell surface carbohydrates from tumors of varying metastatic potential. Tumour Biol 1985, 6:99-114.
  • [53]Reddi AL, Sankaranarayanan K, Arulraj HS, Devaraj N, Devaraj H: Enzyme-linked PNA lectin-binding assay of serum T-antigen in patients with SCC of the uterine cervix. Cancer Lett 2000, 149:207-211.
  • [54]Zhang SL, Liang YR, Li JL, Dai YR, Huang D: Preliminary studies of serum glycoconjugates in patients with cancer using the enzyme-linked lectin assay. Cancer Biochem Biophys 1990, 11:211-216.
  • [55]Graham K, Keller K, Ezzell J, Doyle R: Enzyme-linked lectinosorbent assay (ELLA) for detecting Bacillus anthracis. Eur J Clin Microbiol 1984, 3:210-212.
  • [56]Leriche V, Sibille P, Carpentier B: Use of an enzyme-linked lectinsorbent assay to monitor the shift in polysaccharide composition in bacterial biofilms. Appl Environ Microbiol 2000, 66:1851-1856.
  • [57]Thomas VL, Sanford BA, Moreno R, Ramsay MA: Enzyme-linked lectinsorbent assay measures N-acetyl-D-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis. Curr Microbiol 1997, 35:249-254.
  • [58]Parker N, Makin CA, Ching CK, Eccleston D, Taylor OM, Milton JD, Rhodes JM: A new enzyme-linked lectin/mucin antibody sandwich assay (CAM 17.1/WGA) assessed in combination with CA 19-9 and peanut lectin binding assay for the diagnosis of pancreatic cancer. Cancer 1992, 70:1062-1068.
  • [59]Gornik O, Lauc G: Enzyme linked lectin assay (ELLA) for direct analysis of transferrin sialylation in serum samples. Clin Biochem 2007, 40:718-723.
  • [60]Dwek MV, Jenks A, Leathem AJ: A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin Chim Acta 2010, 411:1935-1939.
  • [61]Kim HJ, Lee SJ: Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant. J Pharm Biomed Anal 2008, 48:716-721.
  • [62]Cook DB, Bustamam AA, Brotherick I, Shenton BK, Self CH: Lectin ELISA for the c-erb-B2 tumor marker protein p185 in patients with breast cancer and controls. Clin Chem 1999, 45:292-295.
  • [63]Matsumoto H, Shinzaki S, Narisada M, Kawamoto S, Kuwamoto K, Moriwaki K, Kanke F, Satomura S, Kumada T, Miyoshi E: Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin Chem Lab Med 2010, 48:505-512.
  • [64]Chen S, Haab BB: Analysis of glycans on serum proteins using antibody microarrays. Methods Mol Biol 2009, 520:39-58.
  • [65]Li C, Lubman DM: Analysis of serum protein glycosylation with antibody-lectin microarray for high-throughput biomarker screening. Methods Mol Biol 2011, 723:15-28.
  • [66]Thompson R, Creavin A, O'Connell M, O'Connor B, Clarke P: Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal Biochem 2011, 413:114-122.
  • [67]Meany DL, Sokoll LJ, Chan DW: Early Detection of Cancer: Immunoassays for Plasma Tumor Markers. Expert Opin Med Diagn 2009, 3:597-605.
  • [68]Yoshida S, Kurokohchi K, Arima K, Masaki T, Hosomi N, Funaki T, Murota M, Kita Y, Watanabe S, Kuriyama S: Clinical significance of lens culinaris agglutinin-reactive fraction of serum alpha-fetoprotein in patients with hepatocellular carcinoma. Int J Oncol 2002, 20:305-309.
  • [69]Johnson PJ, Poon TC, Hjelm NM, Ho CS, Ho SK, Welby C, Stevenson D, Patel T, Parekh R, Townsend RR: Glycan composition of serum alpha-fetoprotein in patients with hepatocellular carcinoma and non-seminomatous germ cell tumour. Br J Cancer 1999, 81:1188-1195.
  • [70]Nakagawa T, Miyoshi E, Yakushijin T, Hiramatsu N, Igura T, Hayashi N, Taniguchi N, Kondo A: Glycomic analysis of alpha-fetoprotein L3 in hepatoma cell lines and hepatocellular carcinoma patients. J Proteome Res 2008, 7:2222-2233.
  • [71]Haab BB, Yue T: High-throughput studies of protein glycoforms using antibody-lectin sandwich arrays. Methods Mol Biol 2011, 785:223-236.
  • [72]Katrlik J, Svitel J, Gemeiner P, Kozar T, Tkac J: Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 2010, 30:394-418.
  • [73]Patwa T, Li C, Simeone DM, Lubman DM: Glycoprotein analysis using protein microarrays and mass spectrometry. Mass Spectrom Rev 2010, 29:830-844.
  • [74]Haab BB, Porter A, Yue T, Li L, Scheiman J, Anderson MA, Barnes D, Schmidt CM, Feng Z, Simeone DM: Glycosylation variants of mucins and CEACAMs as candidate biomarkers for the diagnosis of pancreatic cystic neoplasms. Ann Surg 2010, 251:937-945.
  • [75]Li C, Simeone DM, Brenner DE, Anderson MA, Shedden KA, Ruffin MT, Lubman DM: Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 2009, 8:483-492.
  • [76]Yue T, Goldstein IJ, Hollingsworth MA, Kaul K, Brand RE, Haab BB: The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays. Mol Cell Proteomics 2009, 8:1697-1707.
  • [77]Hart GW, Copeland RJ: Glycomics hits the big time. Cell 2010, 143:672-676.
  • [78]Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW: Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res 2009, 8:613-619.
  • [79]Arnold JN, Saldova R, Galligan MC, Murphy TB, Mimura-Kimura Y, Telford JE, Godwin AK, Rudd PM: Novel glycan biomarkers for the detection of lung cancer. J Proteome Res 2011, 10:1755-1764.
  • [80]Bones J, Mittermayr S, O'Donoghue N, Guttman A, Rudd PM: Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 2010, 82:10208-10215.
  • [81]Zauner G, Koeleman CA, Deelder AM, Wuhrer M: Protein glycosylation analysis by HILIC-LC-MS of proteinase K-generated N- and O-glycopeptides. J Sep Sci 2010, 33:903-910.
  • [82]Li B, An HJ, Kirmiz C, Lebrilla CB, Lam KS, Miyamoto S: Glycoproteomic analyses of ovarian cancer cell lines and sera from ovarian cancer patients show distinct glycosylation changes in individual proteins. J Proteome Res 2008, 7:3776-3788.
  • [83]Ruhaak LR, Miyamoto S, Kelly K, Lebrilla CB: N-Glycan profiling of dried blood spots. Anal Chem 2012, 84:396-402.
  • [84]Alley WR Jr, Madera M, Mechref Y, Novotny MV: Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem 2011, 82:5095-5106.
  • [85]Mechref Y: Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 2011, 32:3467-3481.
  • [86]Kita Y, Miura Y, Furukawa J, Nakano M, Shinohara Y, Ohno M, Takimoto A, Nishimura S: Quantitative glycomics of human whole serum glycoproteins based on the standardized protocol for liberating N-glycans. Mol Cell Proteomics 2007, 6:1437-1445.
  • [87]Kyselova Z, Mechref Y, Kang P, Goetz JA, Dobrolecki LE, Sledge GW, Schnaper L, Hickey RJ, Malkas LH, Novotny MV: Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 2008, 54:1166-1175.
  • [88]Imre T, Kremmer T, Heberger K, Molnar-Szollosi E, Ludanyi K, Pocsfalvi G, Malorni A, Drahos L, Vekey K: Mass spectrometric and linear discriminant analysis of N-glycans of human serum alpha-1-acid glycoprotein in cancer patients and healthy individuals. J Proteomics 2008, 71:186-197.
  • [89]Tsai HY, Boonyapranai K, Sriyam S, Yu CJ, Wu SW, Khoo KH, Phutrakul S, Chen ST: Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics 2011, 11:2162-2170.
  • [90]Zhang S, Shu H, Luo K, Kang X, Zhang Y, Lu H, Liu Y: N-linked glycan changes of serum haptoglobin beta chain in liver disease patients. Mol Biosyst 2011, 7:1621-1628.
  • [91]Drabovich AP, Diamandis EP: Combinatorial peptide libraries facilitate development of multiple reaction monitoring assays for low-abundance proteins. J Proteome Res 2010, 9:1236-1245.
  • [92]Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2007, 6:2212-2229.
  • [93]Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA: Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2009, 8:2339-2349.
  • [94]Kulasingam V, Smith CR, Batruch I, Buckler A, Jeffery DA, Diamandis EP: "Product ion monitoring" assay for prostate-specific antigen in serum using a linear ion-trap. J Proteome Res 2008, 7:640-647.
  • [95]Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW: Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 2004, 3:235-244.
  • [96]Anderson NL, Jackson A, Smith D, Hardie D, Borchers C, Pearson TW: SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device. Mol Cell Proteomics 2009, 8:995-1005.
  • [97]Kulasingam V, Smith CR, Batruch I, Diamandis EP: Immuno-mass spectrometry: quantification of low-abundance proteins in biological fluids. Methods Mol Biol 2011, 728:207-218.
  • [98]Whiteaker JR, Zhao L, Anderson L, Paulovich AG: An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 2010, 9:184-196.
  • [99]Zhao L, Whiteaker JR, Pope ME, Kuhn E, Jackson A, Anderson NL, Pearson TW, Carr SA, Paulovich AG: Quantification of proteins using peptide immunoaffinity enrichment coupled with mass spectrometry. J Vis Exp 2011.
  • [100]Ahn YH, Kim YS, Ji ES, Lee JY, Jung JA, Ko JH, Yoo JS: Comparative quantitation of aberrant glycoforms by lectin-based glycoprotein enrichment coupled with multiple-reaction monitoring mass spectrometry. Anal Chem 2010, 82:4441-4447.
  • [101]Ahn YH, Lee JY, Kim YS, Ko JH, Yoo JS: Quantitative analysis of an aberrant glycoform of TIMP1 from colon cancer serum by L-PHA-enrichment and SISCAPA with MRM mass spectrometry. J Proteome Res 2009, 8:4216-4224.
  • [102]Ahn YH, Shin PM, Oh NR, Park GW, Kim H, Yoo JS: A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma. J Proteomics 2012, 75:5507-5515.
  • [103]Li Y, Tian Y, Rezai T, Prakash A, Lopez MF, Chan DW, Zhang H: Simultaneous analysis of glycosylated and sialylated prostate-specific antigen revealing differential distribution of glycosylated prostate-specific antigen isoforms in prostate cancer tissues. Anal Chem 2011, 83:240-245.
  • [104]Song E, Pyreddy S, Mechref Y: Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2012, 26:1941-1954.
  • [105]Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, Geyer R, Kakehi K, Karlsson NG, Kato K, Kawasaki N, Khoo KH, Kim S, Kondo A, Lattova E, Mechref Y, Miyoshi E, Nakamura K, Narimatsu H, Novotny MV, Packer NH, Perreault H, Peter-Katalinic J, Pohlentz G, Reinhold VN, Rudd PM, Suzuki A, Taniguchi N: Comparison of the methods for profiling glycoprotein glycans--HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 2007, 17:411-422.
  • [106]Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 2009, 8:651-661.
  • [107]Cutalo JM, Deterding LJ, Tomer KB: Characterization of glycopeptides from HIV-I(SF2) gp120 by liquid chromatography mass spectrometry. J Am Soc Mass Spectrom 2004, 15:1545-1555.
  • [108]Leymarie N, Zaia J: Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 2012, 84:3040-3048.
  • [109]Kurogochi M, Matsushista T, Amano M, Furukawa J, Shinohara Y, Aoshima M, Nishimura S: Sialic acid-focused quantitative mouse serum glycoproteomics by multiple reaction monitoring assay. Mol Cell Proteomics 2010, 9:2354-2368.
  • [110]Rebecchi KR, Wenke JL, Go EP, Desaire H: Label-free quantitation: a new glycoproteomics approach. J Am Soc Mass Spectrom 2009, 20:1048-1059.
  • [111]Maresca B, Cigliano L, Corsaro MM, Pieretti G, Natale M, Bucci EM, Dal Piaz F, Balato N, Nino M, Ayala F, Abrescia P: Quantitative determination of haptoglobin glycoform variants in psoriasis. Biol Chem 2010, 391:1429-1439.
  • [112]Nakano M, Nakagawa T, Ito T, Kitada T, Hijioka T, Kasahara A, Tajiri M, Wada Y, Taniguchi N, Miyoshi E: Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers. Int J Cancer 2008, 122:2301-2309.
  • [113]Ivancic MM, Gadgil HS, Halsall HB, Treuheit MJ: LC/MS analysis of complex multiglycosylated human alpha(1)-acid glycoprotein as a model for developing identification and quantitation methods for intact glycopeptide analysis. Anal Biochem 2010, 400:25-32.
  • [114]Zhao Y, Jia W, Wang J, Ying W, Zhang Y, Qian X: Fragmentation and site-specific quantification of core fucosylated glycoprotein by multiple reaction monitoring-mass spectrometry. Anal Chem 2011, 83:8802-8809.
  • [115]Lopez MF, Rezai T, Sarracino DA, Prakash A, Krastins B, Athanas M, Singh RJ, Barnidge DR, Oran P, Borges C, Nelson RW: Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem 2010, 56:281-290.
  • [116]Hua S, Lebrilla C, An HJ: Application of nano-LC-based glycomics towards biomarker discovery. Bioanalysis 2011, 3:2573-2585.
  • [117]Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N: Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 2008, 1184:474-503.
  • [118]Zauner G, Deelder AM, Wuhrer M: Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 2011, 32:3456-3466.
  • [119]Manimala JC, Li Z, Jain A, VedBrat S, Gildersleeve JC: Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem 2005, 6:2229-2241.
  • [120]Manimala JC, Roach TA, Li Z, Gildersleeve JC: High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology 2007, 17:17C-23C.
  • [121]Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V: A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 1982, 257:14365-14369.
  • [122]Safi F, Schlosser W, Kolb G, Beger HG: Diagnostic value of CA 19-9 in patients with pancreatic cancer and nonspecific gastrointestinal symptoms. J Gastrointest Surg 1997, 1:106-112.
  • [123]Duffy MJ, Evoy D, McDermott EW: CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta 2010, 411:1869-1874.
  • [124]von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P, Verstraeten AA, van Kamp GJ, Kok A, van Uffelen K, Snijdewint FG, Paul MA, Meijer S, Hilgers J: An enzyme-linked immunosorbent assay for the measurement of circulating antibodies to polymorphic epithelial mucin (MUC1). Tumour Biol 1998, 19:186-195.
  • [125]Babovic-Vuksanovic D, O'Brien JF: Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms. Mol Diagn Ther 2007, 11:303-311.
  • [126]Helander A, Bergstrom J, Freeze HH: Testing for congenital disorders of glycosylation by HPLC measurement of serum transferrin glycoforms. Clin Chem 2004, 50:954-958.
  • [127]Kuzmanov U, Smith CR, Batruch I, Soosaipillai A, Diamandis A, Diamandis EP: Separation of kallikrein 6 glycoprotein subpopulations in biological fluids by anion-exchange chromatography coupled to ELISA and identification by mass spectrometry. Proteomics 2012, 12:799-809.
  • [128]Gullfot F, Tan TC, von Schantz L, Karlsson EN, Ohlin M, Brumer H, Divne C: The crystal structure of XG-34, an evolved xyloglucan-specific carbohydrate-binding module. Proteins 2010, 78:785-789.
  • [129]Gunnarsson LC, Dexlin L, Karlsson EN, Holst O, Ohlin M: Evolution of a carbohydrate binding module into a protein-specific binder. Biomol Eng 2006, 23:111-117.
  • [130]Matsubara T, Iida M, Tsumuraya T, Fujii I, Sato T: Selection of a carbohydrate-binding domain with a helix-loop-helix structure. Biochemistry 2008, 47:6745-6751.
  • [131]Matsubara T, Sumi M, Kubota H, Taki T, Okahata Y, Sato T: Inhibition of influenza virus infections by sialylgalactose-binding peptides selected from a phage library. J Med Chem 2009, 52:4247-4256.
  • [132]von Schantz L, Gullfot F, Scheer S, Filonova L, Cicortas Gunnarsson L, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M: Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules. BMC Biotechnol 2009, 9:92. BioMed Central Full Text
  • [133]Boese BJ, Breaker RR: In vitro selection and characterization of cellulose-binding DNA aptamers. Nucleic Acids Res 2007, 35:6378-6388.
  • [134]Boese BJ, Corbino K, Breaker RR: In vitro selection and characterization of cellulose-binding RNA aptamers using isothermal amplification. Nucleosides Nucleotides Nucleic Acids 2008, 27:949-966.
  • [135]Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J: Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 2009, 37:866-876.
  • [136]Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B: Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 2008, 130:12636-12638.
  • [137]Rose CM, Hayes MJ, Stettler GR, Hickey SF, Axelrod TM, Giustini NP, Suljak SW: Capillary electrophoretic development of aptamers for a glycosylated VEGF peptide fragment. Analyst 2010, 135:2945-2951.
  • [138]Gerlach JQ, Cunningham S, Kane M, Joshi L: Glycobiomimics and glycobiosensors. Biochem Soc Trans 2010, 38:1333-1336.
  • [139]Jelinek R, Kolusheva S: Carbohydrate biosensors. Chem Rev 2004, 104:5987-6015.
  • [140]Cheng W, Ding L, Lei J, Ding S, Ju H: Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem 2008, 80:3867-3872.
  • [141]Ding L, Cheng W, Wang X, Ding S, Ju H: Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J Am Chem Soc 2008, 130:7224-7225.
  • [142]La Belle JT, Gerlach JQ, Svarovsky S, Joshi L: Label-free impedimetric detection of glycan-lectin interactions. Anal Chem 2007, 79:6959-6964.
  • [143]Oliveira MD, Correia MT, Diniz FB: Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor. Biosens Bioelectron 2009, 25:728-732.
  • [144]Phillips MD, Fyles TM, Barwell NP, James TD: Carbohydrate sensing using a fluorescent molecular tweezer. Chem Commun (Camb) 2009, 6557-6559.
  • [145]Dai Z, Kawde AN, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J: Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc 2006, 128:10018-10019.
  • [146]Pei Z, Anderson H, Aastrup T, Ramstrom O: Study of real-time lectin-carbohydrate interactions on the surface of a quartz crystal microbalance. Biosens Bioelectron 2005, 21:60-66.
  • [147]Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG: Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 2007, 79:2312-2319.
  • [148]Astrom E, Ohlson S: Detection of weakly interacting anti-carbohydrate scFv phages using surface plasmon resonance. J Mol Recognit 2006, 19:282-286.
  • [149]Foley KJ, Forzani ES, Joshi L, Tao N: Detection of lectin-glycan interaction using high resolution surface plasmon resonance. Analyst 2008, 133:744-746.
  • [150]Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T: Polypyrrole oligosaccharide array and surface plasmon resonance imaging for the measurement of glycosaminoglycan binding interactions. Anal Chem 2008, 80:3476-3482.
  • [151]Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, Su AI: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009, 10:R130. BioMed Central Full Text
  • [152]Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004, 101:6062-6067.
  • [153]Abelev GI: Production of embryonal alpha-globulin by transplantable mouse hepatomas. Transplantation 1963, 1:174-180.
  • [154]Tumor markers: physiology, pathobiology, technology, and clinical applications Washington, DC: AACC Press; 2002.
  • [155]Bagshawe KD: Markers in gynaecological cancer. Arch Gynecol 1980, 229:303-310.
  • [156]Bast RC: Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981, 68:1331-1337.
  • [157]Bast RC: 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001, 19:1865-1878.
  • [158]Hilkens J: Monoclonal antibodies against human milk-fat globule membranes detecting differentiation antigens of the mammary gland and its tumors. Int J Cancer 1984, 34:197-206.
  • [159]Kufe D: Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 1984, 3:223-232.
  • [160]Koprowski H: Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 1979, 5:957-971.
  • [161]Ludwig JA, Weinstein JN: Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005, 5:845-856.
  • [162]Coussens L: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230:1132-1139.
  • [163]Yamamoto T: Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 1986, 319:230-234.
  • [164]Wang MC: Purification of a human prostate specific antigen. Invest Urol 1979, 17:159-163.
  • [165]Carayanniotis G, Rao VP: Searching for pathogenic epitopes in thyroglobulin: parameters and caveats. Immunol Today 1977, 18:83-88.
  • [166]Sturgeon C: Practice guidelines for tumor marker use in the clinic. Clin Chem 2002, 48:1151-1159.
  • [167]Beveridge RA: Review of clinical studies of CA 27.29 in breast cancer management. Int J Biol Markers 1999, 14:36-39.
  • [168]Kulasingam V, Diamandis EP: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 2008, 5:588-599.
  文献评价指标  
  下载次数:16次 浏览次数:16次