| BMC Genomics | |
| Mitogenomic sequences effectively recover relationships within brush-footed butterflies (Lepidoptera: Nymphalidae) | |
| Yu-Feng Hsu3  David C Lees2  Li-Hung Lin1  Li-Wei Wu1  | |
| [1] Department of Geosciences, National Taiwan University, Taipei, Taiwan;Department of Zoology, University of Cambridge, Cambridge, UK;Department of Life Science, National Taiwan Normal University, Taipei, Taiwan | |
| 关键词: Pyrosequencing; Papilionoidea; Mitogenomic phylogeny; Limenitidini; Limenitidinae; cox1 gene; DNA Barcoding; Bayes factor; Athyma; | |
| Others : 1216593 DOI : 10.1186/1471-2164-15-468 |
|
| received in 2013-12-10, accepted in 2014-06-04, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Mitogenomic phylogenies have revealed well-supported relationships for many eukaryote groups. In the order Lepidoptera, 113 species mitogenomes had been sequenced (May 14, 2014). However, these data are restricted to ten of the forty-three recognised superfamilies, while it has been challenging to recover large numbers of mitogenomes due to the time and cost required for primer design and sequencing. Nuclear rather than mitochondrial genes have been preferred to reconstruct deep-level lepidopteran phylogenies, without seriously evaluating the potential of entire mitogenomes. Next-generation sequencing methods remove these limitations by providing efficiently massive amounts of sequence data. In the present study, we simultaneously obtained a large number of nymphalid butterfly mitogenomes to evaluate the utility of mitogenomic phylogenies by comparing reconstructions to the now quite well established phylogeny of Nymphalidae.
Results
We newly obtained 30 nymphalid mitogenomes via pyrosequencing on the Roche 454 GS Junior system, and combined these sequences with publicly accessible data to provide a 70-taxa dataset covering 37 genes for a 15,495 bp alignment. Polymorphic sites were not homogeneously distributed across the gene. Two gene regions, nad6 and 3’ end of nad5, were most variable, whereas the cox1 and 5’ ends of rrnL were most conserved. Phylogenetic relationships inferred by two likelihood methods were congruent and strongly supported (>0.95 posterior probability; ML bootstrap >85%), across the majority of nodes for multiple partitioning strategies and substitution models. Bayes factor results showed that the most highly partitioned dataset is the preferred strategy among different partitioning schemes. The most striking phylogenetic findings were that the subfamily Danainae not Libytheinae was sister of the remaining brush-footed butterflies and that, within Limenitidini, the genus Athyma was clearly polyphyletic. None of the single-gene phylogenies recovered the highly supported topologies generated on the basis of the whole mitogenomic data.
Conclusions
Thirty mitogenomes were assembled with 89% completeness from the contigs of pyrosequencing-derived reads. Entire mitogenomes or higher-quality sequences could be obtained by increasing pyrosequencing read coverage or by additional Sanger sequencing. Our mitogenomic phylogenies provide robust nodal support at a range of levels, demonstrating that mitogenomes are both accurate and efficient molecular markers for inferring butterfly phylogeny.
【 授权许可】
2014 Wu et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150701130040769.pdf | 3023KB | ||
| Figure 6. | 89KB | Image | |
| Figure 5. | 115KB | Image | |
| Figure 4. | 155KB | Image | |
| Figure 3. | 121KB | Image | |
| Figure 2. | 70KB | Image | |
| Figure 1. | 81KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Gray MW, Burger G, Lang BF: Mitochondrial evolution. Science 1999, 283(5407):1476-1481.
- [2]Gray MW: Mitochondrial evolution. Cold Spring Harb Perspect Biol 2012, 4(9):a011403.
- [3]Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27(8):1767-1780.
- [4]Taylor RW, Turnbull DM: Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005, 6(5):389-402.
- [5]Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 2004, 101(41):14812-14817.
- [6]Avise JC: Phylogeography: The History and Formation of Species. Cambridge, Massachusetts: Harvard University Press; 2000.
- [7]Avise JC: Phylogeography: retrospect and prospect. J Biogeogr 2009, 36(1):3-15.
- [8]Wiley EO, Lieberman BS: Phylogenetics: Theory and Practice of Phylogenetic Systematics. Hoboken, New Jersey: John Wiley & Sons; 2011.
- [9]Cameron SL: Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu Rev Entomol 2014, 59:95-117.
- [10]Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K: Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 2003, 26(1):121-138.
- [11]Cameron SL, Lambkin CL, Barker SC, Whiting MF: A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 2007, 32(1):40-59.
- [12]Vilstrup JT, Ho SY, Foote AD, Morin PA, Kreb D, Krutzen M, Parra GJ, Robertson KM, de Stephanis R, Verborgh P, Willerslev E, Orlando L, Gilbert MT: Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae. BMC Evol Biol 2011, 11:65. BioMed Central Full Text
- [13]Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Abel Nielsen SC, Rasmussen M, Willerslev E, Gilbert MT, Harkins T: Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 2010, 20(7):908-916.
- [14]Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Thomas P, Gilbert M, Morin PA: Marine turtle mitogenome phylogenetics and evolution. Mol Phylogenet Evol 2012, 65:241-250.
- [15]Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C: A mitogenomic phylogeny of living primates. PLoS One 2013, 8(7):e69504.
- [16]Song N, Liang AP, Bu CP: A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 2012, 7(11):e48778.
- [17]Timmermans MJ, Dodsworth S, Culverwell CL, Bocak L, Ahrens D, Littlewood DT, Pons J, Vogler AP: Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 2010, 38(21):e197.
- [18]Haran J, Timmermans MJ, Vogler AP: Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Mol Phylogenet Evol 2013, 67(1):156-166.
- [19]Chan Y-C, Roos C, Inoue-Murayama M, Inoue E, Shih C-C, Pei KJ-C, Vigilant L: Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS One 2010, 5(12):e14419.
- [20]Hu X-L, Cao G-L, Xue R-Y, Zheng X-J, Zhang X, Duan H-R, Gong C-L: The complete mitogenome and phylogenetic analysis of Bombyx mandarina strain Qingzhou. Mol Biol Rep 2010, 37(6):2599-2608.
- [21]Li D, Guo Y, Shao H, Tellier LC, Wang J, Xiang Z, Xia Q: Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol 2010, 10(1):81. BioMed Central Full Text
- [22]Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y: Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 2002, 19(8):1385-1389.
- [23]Yang X, Xue D, Han H: The complete mitochondrial genome of Biston panterinaria (Lepidoptera: Geometridae), with phylogenetic utility of mitochondrial genome in the Lepidoptera. Gene 2013, 515:349-358.
- [24]Lu H-F, Su T-J, Luo A-R, Zhu C-D, Wu C-S: Characterization of the complete mitochondrion genome of diurnal moth Amata emma (Butler) (Lepidoptera: Erebidae) and its phylogenetic implications. PLoS One 2013, 8(9):e72410.
- [25]Yang L, Wei Z-J, Hong G-Y, Jiang S-T, Wen L-P: The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae). Mol Biol Rep 2009, 36(6):1441-1449.
- [26]van Nieukerken E, Kaila L, Kitching I, Kristensen N, Lees D, Minet J, Mitter C, Mutanen M, Regier J, Simonsen T, Wahlberg N, Yen SH, Zahiri R, Adamski D, Baixeras J, Bartsch D, Bengtsson BA: Order Lepidoptera Linnaeus, 1758. Zootaxa 2011, 3148:212-221.
- [27]Cameron SL, Whiting MF: The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 2008, 408(1–2):112-123.
- [28]Zheng Y, Peng R, Kuro-o M, Zeng X: Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). Mol Biol Evol 2011, 28(9):2521-2535.
- [29]Talavera G, Vila R: What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011, 11(1):315. BioMed Central Full Text
- [30]Wu L-W, Lees DC, Yen S-H, Hsu Y-F: The complete mitochondrial genome of the near-threatened swallowtail, Agehana maraho (Lepidoptera: Papilionidae): evaluating sequence variability and suitable markers for conservation genetic studies. Entomol News 2010, 121(3):267-280.
- [31]Wahlberg N, Leneveu J, Kodandaramaiah U, Pena C, Nylin S, Freitas AV, Brower AV: Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc R Soc B 2009, 276(1677):4295-4302.
- [32]Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N: Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc R Soc B 2012, 279(1731):1093-1099.
- [33]Wheat CW, Wahlberg N: Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends Ecol Evol 2013, 28(11):636-642.
- [34]Peña C, Wahlberg N, Weingartner E, Kodandaramaiah U, Nylin S, Freitas AV, Brower AV: Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Mol Phylogenet Evol 2006, 40(1):29-49.
- [35]Ehrlich PR, Hanski I: On the wings of checkerspots: a model system for population biology. New York: Oxford University Press; 2004.
- [36]Sheppard PM, Turner J, Brown K, Benson W, Singer M: Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos Trans R Soc Lond B Biol Sci 1985, 308:433-610.
- [37]Pollard E, Yates TJ: Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme. London: Chapman & Hall; 1993.
- [38]Freitas AVL, Brown K: Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol 2004, 53(3):363-383.
- [39]Willmott KR: Cladistic analysis of the Neotropical butterfly genus Adelpha (Lepidoptera: Nymphalidae), with comments on the subtribal classification of Limenitidini. Syst Entomol 2003, 28(3):279-322.
- [40]Mullen SP: Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Mol Phylogenet Evol 2006, 39(3):747-758.
- [41]Savage WK, Mullen SP: A single origin of Batesian mimicry among hybridizing populations of admiral butterflies (Limenitis arthemis) rejects an evolutionary reversion to the ancestral phenotype. Proc Biol Sci 2009, 276(1667):2557-2565.
- [42]Prudic KL, Khera S, Sólyom A, Timmermann BN: Isolation, identification, and quantification of potential defensive compounds in the Viceroy butterfly and its larval host–plant, Carolina willow. J Chem Ecol 2007, 33(6):1149-1159.
- [43]Mullen SP, Savage WK, Wahlberg N, Willmott KR: Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. Proc R Soc B 2011, 278(1713):1777-1785.
- [44]Zhang M, Zhong Y, Cao T, Geng Y, Zhang Y, Jin K, Ren Z, Zhang R, Guo Y, Ma E: Phylogenetic relationship and morphological evolution in the subfamily Limenitidinae (Lepidoptera: Nymphalidae). Proc Natl Acad Sci U S A 2008, 18(11):1357-1364.
- [45]Wu D, Hao J, Zhu G, Chen N, Su C, Pan H, Zhang X: Phylogenetic relationships of butterflies in the subfamily Limenitinae based on mitochondrial Cytochrome b gene sequences. Zool Res 2007, 28(1):1-8.
- [46]Zhang M, Cao T-W, Zhong Y, Guo Y-P, Ma E-B: Phylogeny of Limenitidinae butterflies (Lepidoptera: Nymphalidae) inferred from mitochondrial Cytochrome Oxidase I gene sequences. Agric Sci China 2011, 10(4):566-575.
- [47]Vilgalys R: Taxonomic misidentification in public DNA databases. New Phytol 2003, 160(1):4-5.
- [48]Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 2009, 5(12):e1000605.
- [49]Brown JM, Lemmon AR: The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 2007, 56(4):643-655.
- [50]Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J: Bayesian phylogenetic analysis of combined data. Syst Biol 2004, 53(1):47-67.
- [51]Marshall DC, Simon C, Buckley TR: Accurate branch length estimation in partitioned Bayesian analyses requires accommodation of among-partition rate variation and attention to branch length priors. Syst Biol 2006, 55(6):993-1003.
- [52]Galtier N, Nabholz B, Glémin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009, 18(22):4541-4550.
- [53]Wei S, Shi M, Sharkey M, van Achterberg C, Chen X: Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to holometabolous insects. BMC Genomics 2010, 11(1):371. BioMed Central Full Text
- [54]Taylor MF, McKechnie SW, Pierce N, Kreitman M: The lepidopteran mitochondrial control region: structure and evolution. Mol Biol Evol 1993, 10(6):1259-1272.
- [55]Salvato P, Simonato M, Battisti A, Negrisolo E: The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics 2008, 9:331. BioMed Central Full Text
- [56]Bridges CA: Catalogue of Family-group and Genus-group names (Lepidoptera: Rhopalocera). Urbana, Illinois: CA Bridges; 1988.
- [57]Silva-Brandão KL, Wahlberg N, Francini RB, Azeredo-Espin AML, Brown KS Jr, Paluch M, Lees DC, Freitas AV: Phylogenetic relationships of butterflies of the tribe Acraeini (Lepidoptera, Nymphalidae, Heliconiinae) and the evolution of host plant use. Mol Phylogenet Evol 2008, 46(2):515-531.
- [58]Li H, Liu H, Song F, Shi A, Zhou X, Cai W: Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera). PLoS One 2012, 7(9):e45925.
- [59]Kawahara AY: Phylogeny of snout butterflies (Lepidoptera: Nymphalidae: Libytheinae): combining evidence from the morphology of extant, fossil, and recently extinct taxa. Cladistics 2009, 25(3):263-278.
- [60]Sohn J-C, Labandeira C, Davis D, Mitter C: An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 2012, 3286:1-132.
- [61]Miller LD: The higher classification, phylogeny and zoogeography of the Satyridae (Lepidoptera). Mem Am Entomol Soc 1968, 24:1-174.
- [62]Simonsen TJ, Zakharov EV, Djernaes M, Cotton AM, Vane-Wright R, Sperling FAH: Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 2010, 27(2):113-137.
- [63]Nazari V, Zakharov EV, Sperling FA: Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Mol Phylogenet Evol 2007, 42(1):131-156.
- [64]Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 1998, 47(1):9-17.
- [65]Bazinet AL, Cummings MP, Mitter KT, Mitter CW: Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS One 2013, 8(12):e82615.
- [66]Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, Kawahara AY, Sohn J-C, Zwickl DJ, Cho S, Davis DR: A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 2013, 8(3):e58568.
- [67]Cho S, Zwick A, Regier JC, Mitter C, Cummings MP, Yao J, Du Z, Zhao H, Kawahara AY, Weller S: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Syst Biol 2011, 60(6):782-796.
- [68]Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N: A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool Scr 2011, 40(2):158-173.
- [69]Brown WM, George M, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 1979, 76(4):1967-1971.
- [70]Cameron SL, Miller KB, D'Haese CA, Whiting MF, Barker SC: Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 2004, 20(6):534-557.
- [71]Bergsten J: A review of long-branch attraction. Cladistics 2005, 21(2):163-193.
- [72]Cao Y-Q, Ma C, Chen J-Y, Yang D-R: The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics 2012, 13(1):276. BioMed Central Full Text
- [73]Ohshima I, Tanikawa-Dodo Y, Saigusa T, Nishiyama T, Kitani M, Hasebe M, Mohri H: Phylogeny, biogeography, and host-plant association in the subfamily Apaturinae (Insecta: Lepidoptera: Nymphalidae) inferred from eight nuclear and seven mitochondrial genes. Mol Phylogenet Evol 2010, 57(3):1026-1036.
- [74]Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 2005, 54(3):373-390.
- [75]Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 1996, 11(9):367-372.
- [76]Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 11(1):31-46.
- [77]Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Paabo S: The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 2010, 464(7290):894-897.
- [78]Knapp M, Hofreiter M: Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes 2010, 1(2):227-243.
- [79]Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, Corneveaux JJ, Pawlowski TL, Laub T, Nunn G, Stephan DA: Identification of genetic variants using barcoded multiplexed sequencing. Nat Meth 2008, 5(10):887-893.
- [80]Kim MJ, Kang AR, Jeong HC, Kim K-G, Kim I: Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 2011, 61(2):436-445.
- [81]Yin J, Wang A-M, Hong G-Y, Cao Y-Z, Wei Z-J: Complete mitochondrial genome of Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Mitochondrial DNA 2011, 22(3):41-43.
- [82]Ji L, Hao J, Wang Y, Huang D, Zhao J, Zhu C: The complete mitochondrial genome of the dragon swallowtail, Sericinus montela Gray (Lepidoptera: Papilionidae) and its phylogenetic implication. Acta Entomol Sin 2012, 55(1):91-100.
- [83]Liu G, Jiang G-F, Pang H-C, Hong F: The mitochondrial genome of the Chinese special butterfly Luehdorfia chinensis Leech (Lepidoptera: Papilionidae). Mitochondrial DNA 2013, 24(3):211-213.
- [84]Qin F, Jiang G-F, Zhou S-Y: Complete mitochondrial genome of the Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mitochondrial DNA 2012, 23(2):123-125.
- [85]Kim MI, Baek JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I: Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol Cells 2009, 28(4):347-363.
- [86]Feng X, Liu D-F, Wang N-X, Zhu C-D, Jiang G-F: The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mol Biol Rep 2010, 37(8):3877-3888.
- [87]Hao J, Sun Q, Zhao H, Sun X, Gai Y, Yang Q: The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comp Funct Genom 2012, 2012:1-13.
- [88]Mao Z, Hao J, Zhu G, Hu J, Si M, Zhu C: Sequencing and analysis of the complete mitochondrial genome of Pieris rapae Linnaeus (Lepidoptera: Pieridae). Acta Entomol Sin 2010, 53(11):1295-1304.
- [89]Park JS, Cho Y, Kim MJ, Nam S-H, Kim I: Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J Asia Pac Entomol 2012, 15(3):331-341.
- [90]Shi Q, Xia J, Sun X, Hao J, Yang Q: Complete mitogenome of the Painted Jezebel, Delias hyparete Linnaeus (Lepidoptera: Pieridae) and its comparison with other butterfly species. Zool Res 2012, 33(6):111-120.
- [91]Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR: The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol Biol 2006, 15(2):217-225.
- [92]Hao J, Sun M, Shi Q, Sun X, Shao L, Yang Q: Complete mitogenomes of Euploea mulciber (Nymphalidae: Danainae) and Libythea celtis (Nymphalidae: Libytheinae) and their phylogenetic implications. ISRN Genomics 2013, 2013((ID:491636)):1-14.
- [93]Chen M, Tian L-L, Shi Q-H, Cao T-W, Hao J-S: Complete mitogenome of the Lesser Purple Emperor Apatura ilia (Lepidoptera: Nymphalidae: Apaturinae) and comparison with other nymphalid butterflies. Zool Res 2012, 33(2):191-201.
- [94]Zhang M, Nie X, Cao T, Wang J, Li T, Zhang X, Guo Y, Ma E, Zhong Y: The complete mitochondrial genome of the butterfly Apatura metis (Lepidoptera: Nymphalidae). Mol Biol Rep 2012, 39(6):6529-6536.
- [95]Qin X-M, Guan Q-X, Zeng D-L, Qin F, Li H-M: Complete mitochondrial genome of Kallima inachus (Lepidoptera: Nymphalidae: Nymphalinae): Comparison of K. inachus and Argynnis hyperbius. Mitochondrial DNA 2012, 23(4):318-320.
- [96]Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DS, Ferguson LC, Martin SH: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012, 487(7405):94-98.
- [97]Hu J, Zhang D, Hao J, Huang D, Cameron S, Zhu C: The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep 2010, 37(7):3431-3438.
- [98]Wang XC, Sun XY, Sun QQ, Zhang DX, Hu J, Yang Q, Hao JS: Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae). Dongwuxue Yanjiu 2011, 32(5):465-475.
- [99]Kim MJ, Jeong HC, Kim SR, Kim I: Complete mitochondrial genome of the nerippe fritillary butterfly, Argynnis nerippe (Lepidoptera: Nymphalidae). Mitochondrial DNA 2011, 22(4):86-88.
- [100]Xia J, Hu J, Zhu G-P, Zhu C-D, Hao J-S: Sequencing and analysis of the complete mitochondrial genome of Calinaga davidis Oberthür (Lepidoptera: Nymphalidae). Acta Entomol Sin 2011, 54(5):555-565.
- [101]Kim MJ, Wan X, Kim K, Hwang JS, Kim I: Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol 2010, 9(5):735-754.
- [102]Tian L-L, Sun X-Y, Chen M, Gai Y-H, Hao J-S, Yang Q: Complete mitochondrial genome of the five-dot sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications. Zool Res 2012, 33(2):133-143.
- [103]Hong G, Jiang S, Yu M, Yang Y, Li F, Xue F, Wei Z: The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochim Biophys Sin 2009, 41(6):446-455.
- [104]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75(23):7537-7541.
- [105]Chevreux B, Wetter T, Suhai S: Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 1999, 99:45-56.
- [106]Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF: MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013, 69(2):313-319.
- [107]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
- [108]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
- [109]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 2012, 9(8):772.
- [110]Goloboff PA, Farris JS, Nixon KC: TNT, a free program for phylogenetic analysis. Cladistics 2008, 24(5):774-786.
- [111]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61(3):539-542.
- [112]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
- [113]Ott M, Zola J, Stamatakis A, Aluru S: Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing: 2007. Reno, Nevada: ACM; 2007:1-11.
- [114]McGuire JA, Witt CC, Altshuler DL, Remsen JV: Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst Biol 2007, 56(5):837-856.
- [115]Ren F, Tanaka H, Yang Z: An empirical examination of the utility of codon-substitution models in phylogeny reconstruction. Syst Biol 2005, 54(5):808-818.
- [116]Goloboff PA: Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 1999, 15(4):415-428.
- [117]Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90(430):773-795.
PDF