期刊论文详细信息
BMC Neuroscience
Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats
Hisao Nishijo1  Taketoshi Ono2  Natsuko Sakai1  Etsuro Hori1  Kouich Takamoto2  Susumu Urakawa1 
[1] Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan;Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
关键词: Amygdala;    Anxiety;    GABA;    Calcium binding proteins;    Calbindin;    Environmental enrichment;   
Others  :  1140524
DOI  :  10.1186/1471-2202-14-13
 received in 2012-08-07, accepted in 2013-01-22,  发布年份 2013
PDF
【 摘 要 】

Background

Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior.

Results

Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test.

Conclusion

Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the beam walking test and tended to be positively correlated with activity in the center arena in the open field test. The results suggest that rearing in the enriched environment augmented parvalbumin-positive specific neurons in the basolateral amygdala, which induced behavioral plasticity that was reflected by a decrease in anxiety-like behavior in anxiogenic situations.

【 授权许可】

   
2013 Urakawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325041924522.pdf 1731KB PDF download
Figure 5. 94KB Image download
Figure 4. 41KB Image download
Figure 3. 66KB Image download
Figure 2. 39KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, Huang ZJ: Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 2004, 24(43):9598-9611.
  • [2]Jiao Y, Zhang C, Yanagawa Y, Sun QQ: Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci 2006, 26(34):8691-8701.
  • [3]Kemppainen S, Pitkänen A: Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 2000, 426(3):441-467.
  • [4]Smith Y, Paré JF, Paré D: Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs. J Comp Neurol 2000, 416(4):496-508.
  • [5]Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI: Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459(7247):663-667.
  • [6]Sohal VS, Zhang F, Yizhar O, Deisseroth K: Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459(7247):698-702.
  • [7]Leppä E, Linden A-M, Vekovischeva OY, Swinny JD, Rantanen V, Toppila E, Höger H, Sieghart W, Wulff P, Wisden W, Korpi ER: Removal of GABAA receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations. PLoS One 2011, 6(9):e24159.
  • [8]Davis M, Rainnie D, Cassell M: Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994, 17(5):208-214.
  • [9]McGaugh JL, McIntyre CK, Power AE: Amygdala modulation of memory consolidation: interaction with other brain systems. Neurobiol Learn Mem 2002, 78(3):539-552.
  • [10]Carlsen J: Immunocytochemical localization of glutamate decarboxylase in the rat basolateral amygdaloid nucleus, with special reference to GABAergic innervation of amygdalostriatal projection neurons. J Comp Neurol 1988, 273(4):513-526.
  • [11]Smith Y, Paré D: Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol 1994, 342(2):232-248.
  • [12]McDonald AJ, Betette RL: Parvalbumin-containing neurons in the rat basolateral amygdala: morphology and co-localization of calbindin-D (28k). Neuroscience 2001, 102(2):413-425.
  • [13]Muller JF, Mascagni F, McDonald AJ: Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 2006, 494(4):635-650.
  • [14]Rainnie DG, Asprodini EK, Shinnick-Gallagher P: Inhibitory transmission in the basolateral amygdala. J Neurophysiol 1991, 66(3):999-1009.
  • [15]Gean PW, Chang FC: Pharmacological characterization of excitatory synaptic potentials in rat basolateral amygdaloid neurons. Synapse 1992, 11(1):1-9.
  • [16]Smith BN, Dudek FE: Amino acid-mediated regulation of spon- taneous synaptic activity patterns in the rat basolateral amygdala. J Neurophysiol 1996, 76(3):1958-1967.
  • [17]Mahanty NK, Sah P: Calcium-permeable AMPA receptors mediate long-term Potentiation in interneurons in the amygdala. Nature 1998, 394(6694):683-687.
  • [18]Rainnie DG: Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 1999, 82(1):69-85.
  • [19]Sanders SK, Shekhar A: Anxiolytic effects of Chlordiazepoxide blocked by injection of GABAA and benzodiazepine receptor antagonists in the region of the anterior basolateral amygdala of rats. Biol Psychiatry 1995, 37(7):473-476.
  • [20]Hajizadeh Moghaddam A, Roohbakhsh A, Rostami P, Heidary-Davishani A, Zarrindast MR: GABA and histamine interaction in the basolateral amygdala of rats in the plus-maze test of anxiety-like behaviors. Pharmacology 2008, 82(1):59-66.
  • [21]van Praag H, Kempermann G, Gage FH: Neural consequences of environmental enrichment. Nat Rev Neurosci 2000, 1(3):191-198.
  • [22]Nithianantharajah J, Hannan AJ: Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 2006, 7(9):697-709.
  • [23]Ohlsson AL, Johansson BB: Environmental influences functional outcome of cerebral infarction in rats. Stroke 1995, 26(4):644-649.
  • [24]Urakawa S, Hida H, Masuda T, Misumi S, Kim TS, Nishino H: Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats. Neuroscience 2007, 144(3):920-933.
  • [25]Moser MB, Trommald M, Egeland T, Andersen P: Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA 1 pyramidal cells. J Comp Neurol 1997, 380(3):373-381.
  • [26]Schrijver NC, Bahr NI, Weiss IC, Würbel H: Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 2002, 73(1):209-224.
  • [27]Chapillon P, Manneche C, Belzung C, Caston J: Rearing environmental enrichment in two inbred strains of mice: 1 effects on emotional reactivity. Behav Genet 1999, 29(1):41-46.
  • [28]Roy V, Belzung C, Delarue C, Chapillon P: Environmental enrichment in BALB/c mice: effects in classical tests of anxiety and exposure to a predatory odor. Physiol Behav 2001, 74(3):313-320.
  • [29]Benaroya-Milshtein N, Hollander N, Apter A, Kukulansky T, Raz N, Wilf A, Yaniv I, Pick CG: Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci 2004, 20(5):1341-1347.
  • [30]Urakawa S, Masuda T, Kim TS, Misumi S, Hida H, Nishino H: Environmental enrichment modulates behavior and mesocorticolimbic dopamine system in young adult rat. Nagoya Med J 2007, 48(2):139-151.
  • [31]West ML: Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 1999, 22(2):51-61.
  • [32]Schmitz C, Hof PR: Design-based stereology in neuroscience. Neuroscience 2005, 130(4):813-831.
  • [33]Jinno S, Kosaka T: Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of Hippocampal GABAergic neurons in mice. J Comp Neurol 2002, 449(1):1-25.
  • [34]Paxinos G, Watson C: The Rat brain in stereotaxic coordinates. 4th edition. Sandiego: Academic; 1998.
  • [35]McDonald AJ, Mascagni F: Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001, 105(3):681-693.
  • [36]Pitkänen A, Amaral DG: Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the amygdaloid complex. J Comp Neurol 1993, 331(1):14-36.
  • [37]Sorvari H, Soininen H, Paljärvi L, Karkola K, Pitkänen A: Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 1995, 360(2):185-212.
  • [38]Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003, 23(15):6315-6326.
  • [39]Berdel B, Moryś J: Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. Int J Dev Neurosci 2000, 18(6):501-513.
  • [40]Alcantara S, de Lecea L, Del Rio JA, Ferrer I, Soriano E: Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons. Eur J Neurosci 1996, 8(7):1329-1339.
  • [41]Legaz I, Olmos L, Real MA, Guirado S, Davila JC, Medina L: Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse, with special emphasis on those of basolateral amygdalar complex. J Comp Neurol 2005, 488(4):492-513.
  • [42]Komitova M, Mattsson B, Johansson BB, Eriksson PS: Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 2005, 36(6):1278-1282.
  • [43]Gould E: How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 2007, 8(6):481-488.
  • [44]Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132(4):645-660.
  • [45]Iuvone L, Geloso MC, Dell’Anna E: Changes in open field behavior, spatial memory, and Hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp Neurol 1996, 139(1):25-33.
  • [46]Arida RM, Scorza CA, da Silva AV, Scorza FA, Cavalheiro EA: Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the Hippocampal formation. Neurosci Lett 2004, 364(3):135-138.
  • [47]Gomes Da Silva S, Doná F, Da Silva Fernandes MJ, Scorza FA, Cavalheiro EA, Arida RM: Physical exercise during the adolescent period of life increases Hippocampal parvalbumin expression. Brain Dev 2010, 32(2):137-142.
  • [48]Yardley L, Watson S, Britton J, Lear S, Bird J: Effects of anxiety arousal and mental stress on the vestibulo-ocular reflex. Acta Otolaryngol 1995, 115(5):597-602.
  • [49]Wada M, Sunaga N, Nagai M: Anxiety affects the postural sway of the Antero-posterior axis in college students. Neurosci Lett 2001, 302(2–3):157-159.
  • [50]Viaud-Delmon I, Berthoz A, Jouvent R: Multisensory integration for spatial orientation in trait anxiety subjects: absence of visual dependence. Eur Psychiatry 2002, 17(4):194-199.
  • [51]Bolmont B, Gangloff P, Vouriot A, Perrin PP: Mood states and anxiety influence abilities to maintain balance control in healthy human subjects. Neurosci Lett 2002, 329(1):96-100.
  • [52]Kalueff AV, Ishikawa K, Griffith AJ: Anxiety and otovestibular disorders: linking behavioral phenotypes in men and mice. Behav Brain Res 2008, 186(1):1-11.
  • [53]Lepicard EM, Venault P, Negroni J, Perez-Diaz F, Joubert C, Nosten-Bertrand M, Berthoz A, Chapouthier G: Posture and balance responses to a sensory challenge are related to anxiety in mice. Psychiatry Res 2003, 118(3):273-284.
  • [54]Kalueff AV, Keisala T, Minasyan A, Kumar SR, LaPorte JL, Murphy DL, Tuohimaa P: The regular and light–dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents. Nat Protoc 2008, 3(1):129-136.
  • [55]Yilmazer-Hanke DM, Faber-Zuschratter H, Linke R, Schwegler H: Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred roman high- and low-avoidance rats. Eur J Neurosci 2002, 15(7):1206-1218.
  • [56]Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Mäkelä R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW: Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 1997, 94(8):4143-4148.
  • [57]Lewis DA, Hashimoto T, Volk DW: Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005, 6(4):312-324.
  • [58]Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, Elam M: Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry 2007, 62(9):1022-1029.
  • [59]Lodge DJ, Behrens MM, Grace AA: A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 2009, 29(8):2344-2354.
  • [60]Nguyen PT, Nakamura T, Hori E, Urakawa S, Uwano T, Zhao J, Li R, Bac ND, Hamashima T, Ishii Y, Matsushima T, Ono T, Sasahara M, Nishijo H: Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice. PLoS One 2011, 6(3):e18004.
  • [61]Moore DB, Ruygrok AC, Walker DW, Heaton MB: Effects of prenatal ethanol exposure on parvalbumin-expressing GABAergic neurons in the adult rat medial septum. Alcohol Clin Exp Res 1997, 21(5):849-856.
  • [62]Giachino C, Canalia N, Capone F, Fasolo A, Alleva E, Riva MA, Cirulli F, Peretto P: Maternal deprivation and early handling affect density of calcium binding protein-containing neurons in selected brain regions and emotional behavior in periadolescent rats. Neuroscience 2007, 145(2):568-578.
  • [63]Helmeke C, Ovtscharoff W Jr, Poeggel G, Braun K: Imbalance of immunohistochemically characterized interneuron populations in the adolescent and adult rodent medial prefrontal cortex after repeated exposure to neonatal separation stress. Neuroscience 2008, 152(1):18-28.
  • [64]Seidel K, Helmeke C, Poeggel G, Braun K: Repeated neonatal separation stress alters the composition of neurochemically characterized interneuron subpopulations in the rodent dentate gyrus and basolateral amygdala. Dev Neurobiol 2008, 68(9):1137-1152.
  • [65]McDonald AJ, Mascagni F: Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 2007, 146(1):306-320.
  • [66]Hale MW, Johnson PL, Westerman AM, Abrams JK, Shekhar A, Lowry CA: Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34(7):1285-1293.
  文献评价指标  
  下载次数:70次 浏览次数:21次