期刊论文详细信息
BMC Microbiology
Hyperosmotic response of streptococcus mutans: from microscopic physiology to transcriptomic profile
Xin Xu2  Yi Yang1  Renke Wang2  Yuqing Li2  Mingyun Li2  Lei Cheng2  Keke Zhang2  Xuedong Zhou2  Yulong Niu1  Chengcheng Liu2 
[1]Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
[2]State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
关键词: Dental plaque;    Environmental fitness;    Biofilm dispersal;    Transcriptional profile;    Hyperosmotic condition;    Streptococcus mutans;   
Others  :  1142501
DOI  :  10.1186/1471-2180-13-275
 received in 2013-07-16, accepted in 2013-11-26,  发布年份 2013
PDF
【 摘 要 】

Background

Oral streptococci metabolize carbohydrate to produce organic acids, which not only decrease the environmental pH, but also increase osmolality of dental plaque fluid due to tooth demineralization and consequent calcium and phosphate accumulation. Despite these unfavorable environmental changes, the bacteria continue to thrive. The aim of this study was to obtain a global view on strategies taken by Streptococcus mutans to deal with physiologically relevant elevated osmolality, and perseveres within a cariogenic dental plaque.

Results

We investigated phenotypic change of S. mutans biofilm upon hyperosmotic challenge. We found that the hyperosmotic condition was able to initiate S. mutans biofilm dispersal by reducing both microbial content and extracellular polysaccharides matrix. We then used whole-genome microarray with quantitative RT-PCR validation to systemically investigate the underlying molecular machineries of this bacterium in response to the hyperosmotic stimuli. Among those identified 40 deferentially regulated genes, down-regulation of gtfB and comC were believed to be responsible for the observed biofilm dispersal. Further analysis of microarray data showed significant up-regulation of genes and pathways involved in carbohydrate metabolism. Specific genes involved in heat shock response and acid tolerance were also upregulated, indicating potential cross-talk between hyperosmotic and other environmental stress.

Conclusions

Hyperosmotic condition induces significant stress response on S. mutans at both phenotypic and transcriptomic levels. In the meantime, it may take full advantage of these environmental stimuli to better fit the fluctuating environments within oral cavity, and thus emerges as numeric-predominant bacterium under cariogenic conditions.

【 授权许可】

   
2013 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328072716658.pdf 3535KB PDF download
Figure 4. 161KB Image download
Figure 3. 44KB Image download
Figure 2. 115KB Image download
Figure 1. 123KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Lemos JA, Burne RA: A model of efficiency: stress tolerance by streptococcus mutans. Microbiology 2008, 154(Pt 11):3247-3255.
  • [2]Lemos JA, Abranches J, Burne RA: Responses of cariogenic streptococci to environmental stresses. Current Issues Mol Biol 2005, 7(1):95-107.
  • [3]Gao XJ, Fan Y, Kent RL Jr, Van Houte J, Margolis HC: Association of caries activity with the composition of dental plaque fluid. J Dental Res 2001, 80(9):1834-1839.
  • [4]Margolis HC, Duckworth JH, Moreno EC: Composition of pooled resting plaque fluid from caries-free and caries-susceptible individuals. J Dental Res 1988, 67(12):1468-1475.
  • [5]Liu YL, Nascimento M, Burne RA: Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci 2012, 4(3):135-140.
  • [6]Sleator RD, Hill C: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002, 26(1):49-71.
  • [7]Weber A, Jung K: Profiling early osmostress-dependent gene expression in escherichia coli using DNA microarrays. J Bacteriol 2002, 184(19):5502-5507.
  • [8]Epstein W: The roles and regulation of potassium in bacteria. Prog Nucleic Acid Re 2003, 75:293-320.
  • [9]Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian RY, Kenton S, Jia HG, et al.: Genome sequence of streptococcus mutans UA159, a cariogenic dental pathogen. P Natl Acad Sci USA 2002, 99(22):14434-14439.
  • [10]Abranches J, Lemos JA, Burne RA: Osmotic stress responses of streptococcus mutans UA159. Fems Microbiol Lett 2006, 255(2):240-246.
  • [11]Shemesh M, Tam A, Kott-Gutkowski M, Feldman M, Steinberg D: DNA-microarrays identification of streptococcus mutans genes associated with biofilm thickness. Bmc Microbiol 2008, 8:236. BioMed Central Full Text
  • [12]Shemesh M, Tam A, Aharoni R, Steinberg D: Genetic adaptation of streptococcus mutans during biofilm formation on different types of surfaces. Bmc Microbiol 2010, 10:51. BioMed Central Full Text
  • [13]Ahn SJ, Wen ZT, Burne RA: Effects of oxygen on virulence traits of streptococcus mutans. J Bacteriol 2007, 189(23):8519-8527.
  • [14]Biswas I, Drake L, Erkina D, Biswas S: Involvement of sensor kinases in the stress tolerance response of streptococcus mutans. J Bacteriol 2008, 190(1):68-77.
  • [15]Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH, Hamaker BR, Lemos JA, Koo H: Dynamics of streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. Plos One 2010, 5(10):e13478.
  • [16]Koo H, Xiao J, Klein MI: Extracellular polysaccharides matrix–an often forgotten virulence factor in oral biofilm research. Int J Oral Sci 2009, 1(4):229-234.
  • [17]Ahn SJ, Wen ZT, Burne RA: Multilevel control of competence development and stress tolerance in streptococcus mutans UA159. Infect Immun 2006, 74(3):1631-1642.
  • [18]Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM: Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol MicroBiol 2009, 72(4):905-917.
  • [19]Perry JA, Cvitkovitch DG, Levesque CM: Cell death in streptococcus mutans biofilms: a link between CSP and extracellular DNA. Fems Microbiol Lett 2009, 299(2):261-266.
  • [20]Kempf B, Bremer E: Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 1998, 170(5):319-330.
  • [21]Matsui R, Cvitkovitch D: Acid tolerance mechanisms utilized by streptococcus mutans. Future MicroBiol 2010, 5(3):403-417.
  • [22]McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S: Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 2012, 10(1):39-50.
  • [23]Xu X, Zhou XD, Wu CD: The Tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of streptococcus mutans. Antimicrob Agents Ch 2011, 55(3):1229-1236.
  • [24]Olsen B, Murakami CJ, Kaeberlein M: YODA: software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 2010, 11:141. BioMed Central Full Text
  • [25]Reuter M, Mallett A, Pearson BM, van Vliet AHM: Biofilm formation by campylobacter jejuni is increased under aerobic conditions. Appl Environ Microb 2010, 76(7):2122-2128.
  • [26]Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU: Efficacy of E. Officinalis on the cariogenic properties of streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. Plos One 2012, 7(7):e40319.
  • [27]Xiao J, Koo H: Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by streptococcus mutans in biofilms. J Appl Microbiol 2010, 108(6):2103-2113.
  • [28]Xiao J, Klein MI, Falsetta ML, Lu BW, Delahunty CM, Yates JR, Heydorn A, Koo H: The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. Plos Pathog 2012, 8(4):e1002623.
  • [29]Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S: Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146(Pt 10):2395-2407.
  • [30]Xue XL, Tomasch J, Sztajer H, Wagner-Dobler I: The delta subunit of RNA polymerase, RpoE, is a global modulator of streptococcus mutans environmental adaptation. J Bacteriol 2010, 192(19):5081-5092.
  • [31]Hong FX, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22(22):2825-2827.
  • [32]KEGG: Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/ webcite
  • [33]Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a desktop application for gene Set enrichment analysis. Bioinformatics 2007, 23(23):3251-3253.
  • [34]The R Project for Statistical Computing. http://www.r-project.org/ webcite
  文献评价指标  
  下载次数:33次 浏览次数:9次