期刊论文详细信息
BMC Medical Genetics
Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion
Kun Sun4  Rang Xu5  Fen Li4  Qi-Hua Fu1  Jian Wang1  Qian-Qian Guo2  Shao-Hai Fang2  Jian Zhang3  Sun Chen2  Yue-Juan Xu2 
[1]Medical Laboratory, Shanghai Children’s Medical Center, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
[2]Department of Pediatric Cardiology, Xinhua hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
[3]Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
[4]Department of Pediatric Cardiology, Shanghai Children’s Medical Center, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
[5]Scientific Research Center, Xinhua hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
关键词: Molecular dynamics simulation;    Conotruncal heart defects;    22q11.2 deletion;    TBX1 haploinsufficiency;   
Others  :  848340
DOI  :  10.1186/1471-2350-15-78
 received in 2014-03-12, accepted in 2014-06-24,  发布年份 2014
PDF
【 摘 要 】

Background

TBX1 and CRKL haploinsufficiency is thought to cause the cardiac phenotype of the 22q11.2 deletion syndrome. However, few unequivocal mutations of TBX1 and CRKL have been discovered in isolated conotrucal heart defects (CTDs) patients. The aim of the study was to screen the mutation of TBX1 and CRKL in isolated CTDs Chinese patients without 22q11.2 deletion and identify the pathomechanism of the missense mutations.

Methods

We enrolled 199 non-22q11.2 deletion patients with CTDs and 139 unrelated healthy controls. Gene sequencing were performed for all of them. The functional data of mutations were obtained by in vitro transfection and luciferase experiments and computer modelling.

Results

Screening of the TBX1 coding sequence identified a de novo missense mutation (c.385G → A; p.E129K) and a known polymorphism (c.928G → A; p.G310S). In vitro experiments demonstrate that the TBX1E129K variant almost lost transactivation activity. The TBX1G310S variant seems to affect the interaction of TBX1 with other factors. Computer molecular dynamics simulations showed the de novo missense mutation is likely to affect TBX1-DNA interaction. No mutation of CRKL gene was found.

Conclusions

These observations suggest that the TBX1 loss-of-function mutation may be involved in the pathogenesis of isolated CTDs. This is the first human missense mutation showing that TBX1 is a candidate causing isolated CTDs in Chinese patients without 22q11.2 deletion.

【 授权许可】

   
2014 Xu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140718070009543.pdf 2970KB PDF download
Figure 4. 97KB Image download
Figure 3. 205KB Image download
Figure 2. 68KB Image download
Figure 1. 119KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Conti E, Grifone N, Sarkozy A, Tandoi C, Marino B, Digilio MC, Mingarelli R, Pizzuti A, Dallapiccola B: DiGeroge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 gene. Eur J Hum Genetic 2003, 11:349-351.
  • [2]Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, Harris SE, Goetsch MA, Simpson PM, Bick DP, Broechel U, Pelech AN, Twddell JS, Mitchell ME: Human gene copy number spectra analysis in congenital heart malformations. Physil Genomics 2012, 44:518-541.
  • [3]Xu YJ, Wang J, Xu R, Zhao PJ, Wang XK, Sun HJ, Bao LM, Shen J, Fu QH, Sun K: Detecting 22q11.2 deletion in Chinese children with conotruncal heart defects and single nucleotide polymorphisms in the haploid TBX1 locus. BMC Med Genet 2011, 12:169.
  • [4]Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R: Role of TBX1 in human del22q11.2 syndrome. Lancet 2003, 362:1366-1373.
  • [5]Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, Hoyer J, Kaulitz R, Singer H, Rauch A: Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 2010, 47:321-331.
  • [6]Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML: Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 2001, 38:E45.
  • [7]Verhagen JM, Diderich KE, Oudesluijs G, Mancini GM, Eqqink AJ, Verkleij-Hagoort AC, Groenenberg IA, Willems PJ, du Plessis FA, de Man SA, Srebniak MI, van Opstal D, Hulsman LO, van Zutven LJ, Wessels MW: Phenotypic variability of atypical 22q11.2 deletions not including TBX1. Am J Med Genet A 2012, 10(158(A)):2412-2420.
  • [8]Osoegawa K, Iovannisci DM, Lin B, Parodi C, Schultz K, Shaw GM, Lammer EJ: Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. Am J Med Genet A 2014, 164A:97-406.
  • [9]Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A: Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy nuerocristopathies of DiGeorge syndrome. Nat Genet 2001, 27(3):293-298.
  • [10]Moon AM, Guris DL, Seo JH, Hammond J, Talbot A, Imanoto A: Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell 2006, 10:71-80.
  • [11]Guris DL, Duester G, Papaioannou VE, Imamoto A: Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell 2006, 10:81-92.
  • [12]Sinha S, Abraham S, Gronostajski RM, Campbell CE: Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene 2000, 258:15-29.
  • [13]Omari KE, Mesmaeker JD, Karia D, Ginn H, Bhattacharya S, Mancini EJ: Structure of the DNA-bound T-box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome. Proteins 2012, 80:655.
  • [14]Huang J, Yan J, Zhang J, Zhu SG, Wang YL, Shi T, Zhu CH, Chen C, Liu X, Cheng JK, Mustelin T, Feng GS, Chen GQ, Yu JX: SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 2012, 3:911. doi:10.1038/ncomms1919
  • [15]Wang J, Cieplak P, Kollman PA: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 2000, 21:1049-1074.
  • [16]Rychaert JP, Ciccotti G, Berendsen HJC: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 1977, 23:327-341.
  • [17]Miyamoto S, Kollman PA: SERRLE An analysis version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 1992, 13:952-962.
  • [18]Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR: Molecular dynamics with coupling to an external bath. J Chem Phys 1984, 81:3684-3690.
  • [19]Papaioannou VE, Silver LM: The T-box gene family. BioEsssays 1998, 20:9-19.
  • [20]Smith J: T-box genes: what they do and how they do it. Trend Genet 1999, 15:154-158.
  • [21]Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, Franceschini P, Lala R, Holmes LB, Gebuhr TC, Bruneau BG, Schinzel A, Seidman JG, Seidman CE, Jorde LB: Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 1997, 16:311-315.
  • [22]Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR: Noval TBX3 mutation data in families with Ulnar-Mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 2006, 49:151-158.
  • [23]Mori AD, Bruneau BG: TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 2004, 19:211-215.
  • [24]Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O’Donovan MC, Owen MJ, Scambler PJ, Lindsay E: Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci U S A 2006, 103:7729-7734.
  • [25]Torres-Juan L, Rosell J, Morla M, Vidal-Pou C, Garcia-Algas F, de la Fuente MA, Juan M, Tuban A, Bachiller D, Bemues M, Perez-Granero A, Govea N, Busquets X, Heine-Suner D: Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation. Eur J Hum Genet 2007, 15:658-663.
  • [26]Choudhry P, Trede NS: DiGeorge syndrome gene tbx1 functions through wnt11r to regulate heart looping and differentiation. PLoS One 2013, 8:e58145.
  • [27]Scambler PJ: 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010, 31:378-390.
  • [28]Buckingham M, Meilhac S, Zaffran S: Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005, 6:826-835.
  • [29]Chen L, Fulcoli FG, Tang S, Baldini A: Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 2009, 105:842-851.
  • [30]Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE: Identification of downstream genetic pathways of Tbx1 in the secondary heart field. Dev Biol 2008, 316:524-537.
  • [31]Greulich F, Rudat C, Kispert A: Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 2011, 91:212-222.
  • [32]Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A: Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 2012, 8:e1002571.
  • [33]Fulcoli FG, Huynh T, Scambler PJ, Baldini A: TBX1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One 2009, 4:e6049.
  • [34]Vallejo-Illarramendi A, Zang K, Reichardt LF: Focal adhesion kinase is required for neural crest cell morphogenesis during mouse cardiovascular development. J Clin Invest 2009, 119:2218-2230.
  • [35]Zhao W, Niu G, Shen B, Zheng Y, Gong F, Wang X, Lee J, Mulvihill JJ, Chen X, Li S: High-resolution analysis of copy number variants in adults with simple-to-moderate congenital heart disease. Am J Med Genet A 2013, 161A:3087-3094.
  文献评价指标  
  下载次数:1次 浏览次数:6次