| BMC Genomics | |
| Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum | |
| Adam Polkinghorne5  Peter Timms5  Garry S A Myers7  Cheyne Flanagan6  Oliver Funnell4  Amber Gillett2  Martina Jelocnik5  Claire Bertelli3  Tamieka A Fraser5  Nathan L Bachmann1  | |
| [1] Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs 4558, Queensland, Australia;Australia Zoo Wildlife Hospital, Beerwah, Queensland 4519, Australia;Current address: Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland;Adelaide Hills Animal Hospital, Stirling, South Australia 5152, Australia;Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove 4059, Queensland, Australia;Port Macquarie Koala Hospital, Port Macquarie, NSW 2444, Australia;Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore 21201, USA | |
| 关键词: Cytotoxin; Pseudogene; Single nucleotide polymorphism; Chlamydia pecorum; | |
| Others : 1216282 DOI : 10.1186/1471-2164-15-667 |
|
| received in 2014-05-24, accepted in 2014-07-31, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced.
Results
Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these point mutations.
Conclusions
The genomic data revealed that variation between C. pecorum strains were mainly due to the accumulation of SNPs, some of which cause gene inactivation. The identification of these genetic differences will provide the basis for further studies to understand the biology and evolution of this important animal pathogen.
【 授权许可】
2014 Bachmann et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150629211002447.pdf | 1192KB | ||
| Figure 6. | 59KB | Image | |
| Figure 5. | 59KB | Image | |
| Figure 4. | 74KB | Image | |
| Figure 3. | 59KB | Image | |
| Figure 2. | 38KB | Image | |
| Figure 1. | 21KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P: Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004, 72(4):1843-1855.
- [2]Verminnen K, Duquenne B, De Keukeleire D, Duim B, Pannekoek Y, Braeckman L, Vanrompay D: Evaluation of a Chlamydophila psittaci infection diagnostic platform for zoonotic risk assessment. J Clin Microbiol 2008, 46(1):281-285.
- [3]Anderson IE, Baxter SI, Dunbar S, Rae AG, Philips HL, Clarkson MJ, Herring AJ: Analyses of the genomes of chlamydial isolates from ruminants and pigs support the adoption of the new species Chlamydia pecorum. Int J Syst Evol Microbiol 1996, 46(1):245-251.
- [4]Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, Cerdeno-Tarraga AM, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG, Parkhill J, Longbottom D: The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res 2005, 15(5):629-640.
- [5]Bodetti TJ, Jacobson E, Wan C, Hafner L, Pospischil A, Rose K, Timms P: Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst App Microbiol 2002, 25(1):146-152.
- [6]Voigt A, Schofl G, Saluz HP: The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. PLoS One 2012, 7(4):e35097.
- [7]Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, Lewis DA, Spratt BG, Unemo M, Persson K, Bjartling C, Brunham R, de Vries HJ, Morre SA, Speksnijder A, Bebear CM, Clerc M, de Barbeyrac B, Parkhill J, Thomson NR: Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 2012, 44(4):413-419. S411
- [8]Fraser C, Hanage WP, Spratt BG: Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A 2005, 102(6):1968-1973.
- [9]Bush RM: Predicting adaptive evolution. Nat Rev Genet 2001, 2(5):387-392.
- [10]Borges V, Nunes A, Ferreira R, Borrego MJ, Gomes JP: Directional evolution of Chlamydia trachomatis towards niche-specific adaptation. J Bacteriol 2012, 194(22):6143-6153.
- [11]Fukushi H, Hirai K: Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Evol Microbiol 1992, 42(2):306-308.
- [12]Polkinghorne A, Borel N, Becker A, Lu ZH, Zimmermann DR, Brugnera E, Pospischil A, Vaughan L: Molecular evidence for chlamydial infections in the eyes of sheep. Vet Microbiol 2009, 135(1–2):142-146.
- [13]Jee J, Degraves FJ, Kim T, Kaltenboeck B: High prevalence of natural Chlamydophila species infection in calves. J Clin Microbiol 2004, 42(12):5664-5672.
- [14]Poudel A, Elsasser TH, Rahman Kh S, Chowdhury EU, Kaltenboeck B: Asymptomatic endemic Chlamydia pecorum infections reduce growth rates in calves by up to 48 percent. PLoS One 2012, 7(9):e44961.
- [15]Jackson M, White N, Giffard P, Timms P: Epizootiology of Chlamydia infections in two free-range koala populations. Vet Microbiol 1999, 65(4):255-264.
- [16]McColl KA, Martin RW, Gleeson LJ, Handasyde KA, Lee AK: Chlamydia infection and infertility in the female koala (Phascolarctos cinereus). Vet Rec 1984, 115(25–26):655.
- [17]Polkinghorne A, Hanger J, Timms P: Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet Microbiol 2013, 165(3–4):214-223.
- [18]Jelocnik M, Frentiu FD, Timms P, Polkinghorne A: Multi-locus sequence analysis provides insights into the molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle and koalas. J Clin Microbiol 2013, 51(8):2625-2632.
- [19]Marsh J, Kollipara A, Timms P, Polkinghorne A: Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus). BMC Microbiol 2011, 11:77.
- [20]Yousef Mohamad K, Roche SM, Myers G, Bavoil PM, Laroucau K, Magnino S, Laurent S, Rasschaert D, Rodolakis A: Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. Infect Genet Evol 2008, 8(6):764-771.
- [21]Sait M, Livingstone M, Clark EM, Wheelhouse N, Spalding L, Markey B, Magnino S, Lainson FA, Myers GS, Longbottom D: Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics 2014, 15(1):23.
- [22]Kollipara A, Polkinghorne A, Wan C, Kanyoka P, Hanger J, Loader J, Callaghan J, Bell A, Ellis W, Fitzgibbon S, Melzer A, Beagley K, Timms P: Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet Microbiol 2013, 167(3-4):513-522.
- [23]Stephens RS, Myers G, Eppinger M, Bavoil PM: Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 2009, 55(2):115-119.
- [24]Mojica S, Huot Creasy H, Daugherty S, Read TD, Kim T, Kaltenboeck B, Bavoil P, Myers GS: Genome sequence of the obligate intracellular animal pathogen Chlamydia pecorum E58. J Bacteriol 2011, 193(14):3690.
- [25]Sullivan MJ, Petty NK, Beatson SA: Easyfig: a genome comparison visualizer. Bioinformatics 2011, 27(7):1009-1010.
- [26]Fields KA, Mead DJ, Dooley CA, Hackstadt T: Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 2003, 48(3):671-683.
- [27]Hefty PS, Stephens RS: Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 2007, 189(1):198-206.
- [28]Outten FW, Wood MJ, Munoz FM, Storz G: The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 2003, 278(46):45713-45719.
- [29]Wang D, Zhang Y, Zhang Z, Zhu J, Yu J: KaKs_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Dev Reprod Biol 2010, 8(1):77-80.
- [30]Taylor LD, Nelson DE, Dorward DW, Whitmire WM, Caldwell HD: Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect Immun 2010, 78(6):2691-2699.
- [31]Nelson DE, Crane DD, Taylor LD, Dorward DW, Goheen MM, Caldwell HD: Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect Immun 2006, 74(1):73-80.
- [32]Toft C, Andersson SG: Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 2010, 11(7):465-475.
- [33]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
- [34]Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 2000, 28(6):1397-1406.
- [35]Stephens RS, Lammel CJ: Chlamydia outer membrane protein discovery using genomics. Curr Opin Microbiol 2001, 4(1):16-20.
- [36]Wehrl W, Brinkmann V, Jungblut PR, Meyer TF, Szczepek AJ: From the inside out–processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol Microbiol 2004, 51(2):319-334.
- [37]Henderson IR, Lam AC: Polymorphic proteins of Chlamydia spp.--autotransporters beyond the Proteobacteria. Trends Microbiol 2001, 9(12):573-578.
- [38]Kleba B, Stephens RS: Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect Immun 2008, 76(11):4842-4850.
- [39]Reinert DJ, Jank T, Aktories K, Schulz GE: Structural basis for the function of Clostridium difficile toxin B. J Mol Biol 2005, 351(5):973-981.
- [40]Busch C, Hofmann F, Selzer J, Munro S, Jeckel D, Aktories K: A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 1998, 273(31):19566-19572.
- [41]Richard JF, Petit L, Gibert M, Marvaud JC, Bouchaud C, Popoff MR: Bacterial toxins modifying the actin cytoskeleton. Int Microbiol 1999, 2(3):185-194.
- [42]Kuo C-H, Ochman H: The extinction dynamics of bacterial pseudogenes. PLoS Genet 2010, 6(8):e1001050.
- [43]Breda A, Rosado LA, Lorenzini DM, Basso LA, Santos DS: Molecular, kinetic and thermodynamic characterization of Mycobacterium tuberculosis orotate phosphoribosyltransferase. Mol Biosyst 2012, 8(2):572-586.
- [44]Mitchell CM, Hovis KM, Bavoil PM, Myers GS, Carrasco JA, Timms P: Comparison of koala LPCoLN and human strains of Chlamydia pneumoniae highlights extended genetic diversity in the species. BMC Genomics 2010, 11:442.
- [45]McClarty G, Qin B: Pyrimidine metabolism by intracellular Chlamydia psittaci. J Bacteriol 1993, 175(15):4652-4661.
- [46]Warford AL, Rekrut KA, Levy RA, Drill AE: Sucrose phosphate glutamate for combined transport of chlamydial and viral specimens. Am J Clin Pathol 1984, 81(6):762-764.
- [47]Page LA, Cutlip RC: Chlamydia polyarthritis in Iowa lambs. Iowa Veterinarian 1968, 39:10-18.
- [48]Wan C, Loader J, Hanger J, Beagley K, Timms P, Polkinghorne A: Using quantitative polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, urinary and reproductive tract disease in the koala (Phascolarctos cinereus). Aust Vet J 2011, 89(10):409-412.
- [49]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967.
- [50]Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A: GenDB–an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003, 31(8):2187-2195.
- [51]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
- [52]Guindon S, Delsuc F, Dufayard JF, Gascuel O: Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009, 537:113-137.
- [53]Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics 2005, 21(16):3422-3423.
- [54]Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011, 12(1):402.
- [55]Li WH, Wu CI, Luo CC: A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 1985, 2(2):150-174.
- [56]Hurst LD: The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 2002, 18(9):486.
- [57]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
- [58]Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L: VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009, 25(17):2283-2285.
- [59]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
- [60]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
- [61]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
PDF