BMC Microbiology | |
Peptidoglycan: a post-genomic analysis | |
Michel Drancourt3  Pierre Pontarotti2  Philippe Gouret2  Bernard Henrissat1  Caroline Cayrou3  | |
[1] Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS UMR 7257, Marseille, France;Evolution Biologique et Modélisation, UMR-CNRS 6632, Université de Provence, Marseille, France;Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 7872 IRD 198, Méditerranée Infection, Aix-Marseille-Université, Marseille, France | |
关键词: Glycopeptides; Beta-lactamines; Gram; Glycosyltransferase; Glycoside hydrolase; Genome; Peptidoglycan; | |
Others : 1144727 DOI : 10.1186/1471-2180-12-294 |
|
received in 2012-05-08, accepted in 2012-12-06, 发布年份 2012 | |
【 摘 要 】
Background
To derive post-genomic, neutral insight into the peptidoglycan (PG) distribution among organisms, we mined 1,644 genomes listed in the Carbohydrate-Active Enzymes database for the presence of a minimal 3-gene set that is necessary for PG metabolism. This gene set consists of one gene from the glycosyltransferase family GT28, one from family GT51 and at least one gene belonging to one of five glycoside hydrolase families (GH23, GH73, GH102, GH103 and GH104).
Results
None of the 103 Viruses or 101 Archaea examined possessed the minimal 3-gene set, but this set was detected in 1/42 of the Eukarya members (Micromonas sp., coding for GT28, GT51 and GH103) and in 1,260/1,398 (90.1%) of Bacteria, with a 100% positive predictive value for the presence of PG. Pearson correlation test showed that GT51 family genes were significantly associated with PG with a value of 0.963 and a p value less than 10-3. This result was confirmed by a phylogenetic comparative analysis showing that the GT51-encoding gene was significantly associated with PG with a Pagel’s score of 60 and 51 (percentage of error close to 0%). Phylogenetic analysis indicated that the GT51 gene history comprised eight loss and one gain events, and suggested a dynamic on-going process.
Conclusions
Genome analysis is a neutral approach to explore prospectively the presence of PG in uncultured, sequenced organisms with high predictive values.
【 授权许可】
2012 Cayrou et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150331005555447.pdf | 745KB | download | |
Figure 5. | 57KB | Image | download |
Figure 4. | 53KB | Image | download |
Figure 3. | 53KB | Image | download |
Figure 2. | 52KB | Image | download |
Figure 1. | 31KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Vollmer W, Blanot D, de Pedro MA: Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008, 32:149-167.
- [2]Gram HC: The differential staining of Schizomycetes in tissue sections and in dried preparations. Furtschitte der Medicin 1884, 2:185-189.
- [3]Wayne LG, Kubica GP: The Mycobacteria. In Bergey’s Manual of Systematic Bacteriology. Volume 2. 1st edition. Edited by Sneath PHA, Mair NS, Sharp ME, Holt JG. Baltimore: Williams & Wilkins; 1986:1435-1457.
- [4]Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S: Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaera classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 2009, 55:267-275.
- [5]Fukushi H, Hirai K: Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Evol Microbiol 1992, 42:306-308.
- [6]Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P: Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010, 60:249-266.
- [7]The Carbohydrate Active Enzymes database. http://www.cazy.org/ webcite
- [8]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37:233-238.
- [9]van Heijenoort J: Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001, 11:25-36.
- [10]Boyer M, Madoui MA, Gimenez G, La Scola B, Raoult D: Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 2010, 5:e15530.
- [11]Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S: Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 2001, 51:1521-1528.
- [12]Ting CS, Hsich C, Sundararaman S, Manella C, Marko M: Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 2007, 189:4485-4493.
- [13]Botero LM, Brown KB, Brunefiels S, Burr M, Castenholz RW, Young M, McDermott TR: Thermobaculum terrenum gen. nov., sp. nov. a non phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 2004, 181:269-277.
- [14]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [15]IODA website. http://ioda.univ-provence.fr webcite
- [16]Pavelka MS Jr: Another brick in the wall. Trends Microbiol 2007, 15:147-149.
- [17]Dumler JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR: Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001, 51:2145-2165.
- [18]Izzard L, Fuller A, Blacksell SD, Paris DH, Richards AL, Aukkanit N, Nguyen C, Jiang J, Fenwick S, Day NPJ, Graves S, Stenos J: Isolation of a Novel Orientia Species (O. chuto sp. nov.) from a patient infected in Dubai. J Clin Microbiol 2010, 48:4404-4409.
- [19]Kandlera O, König K: Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 1998, 54:305-308.
- [20]Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H: Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003, 6:417-424.
- [21]Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasić L, Thingstad TF, Rohwer F, Mira A: Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009, 7:828-836.
- [22]Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL: Green evolution and dynamic adaptations revealed by genomes of the parine picoeukaryotes Micromonas. Science 2009, 324:268-272.
- [23]Keeling PJ: Diversity and evolutionary history of plastids and their hosts. Am J Bot 2004, 91:1481-1493.
- [24]Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H, Takio S, Seki M: Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc Nat Acad Sci USA 2006, 103:6753-6758.
- [25]Takano H, Takechi K: Plastid peptidoglycan. Biochim Biophys Acta 2010, 1800:144-151.
- [26]Dyall SD, Brown MT, Johnson PJ: Ancient invasions: from endosymbionts to organelles. Science 2004, 304:253-257.
- [27]Mackiewicz P: A hypothesis for import of the nuclear encoded PsaE protein of Paulinella chromatophora (Cercozoa, Rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol 2010, 46:847-859.
- [28]Huang P, Li WS, Xie J, Yang XM, Jiang DK, Jiang S, Yu L: Characterization and expression of HLysG2, a basic goose-type lysozyme from the human eye and testis. Mol Immunol 2011, 48:524-531.
- [29]Derrien M, Vaughan EE, Plugge CM, de Vos WM: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004, 54:1469-1476.
- [30]Bush K: The coming of age of antibiotics: discovery and therapeutic value. Ann N Y Acad Sci 2010, 1213:1-4.
- [31]Levine DP: Vancomycin: a history. Clin Infect Dis 2006, 42:S5-S12.
- [32]Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D: Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 2009, 4:13.
- [33]Martin DD, Ciulla RA, Roberts MF: Osmoadaptation in archaea. Appl Environ Microbiol 1999, 65:1815-1825.
- [34]Roesser M, Müller V: Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 2001, 3:743-754.
- [35]Pubmed website. http://www.ncbi.nlm.nih.gov/pubmed webcite
- [36]High-quality Automated and Manual Annotation of microbial Proteomes (HAMAP) website. http://hamap.expasy.org/ webcite
- [37]GenBank database. http://www.ncbi.nlm.nih.gov/genbank/ webcite
- [38]Genome OnLine Database GOLD. http://genomesonline.org webcite
- [39]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
- [40]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
- [41]Gouret P, Paganini J, Dainat J, Louati D, Darbo E, Pontarotti P, Levasseur A: Integration of evolutionary biology concepts for functional annotation and automation of complex research in evolution: the multi-agent software system DAGOBAH. In Evolutionary biology-concept, biodiversity, macroevolution and genome evolution. Part 1. Edited by Pontarotti P. Berlin Heideberg: Springer; 2011:71-87.
- [42]Gouret P, Thompson JD, Pontarotti P: PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees. BMC Bioinformatics 2009, 10:298.
- [43]Mirkin BG, Fenner T, Galperin MY, Koonin EV: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003, 3:2.
- [44]Barker D, Pagel M: Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Comput Biol 2005, 1:e3.