BMC Genomics | |
Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration | |
Gustavo D Aguirre1  William A Beltran1  Karina E Guziewicz1  Sem Genini1  | |
[1] Department of Clinical Studies-Philadelphia, Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, 19104 Philadelphia, PA, USA | |
关键词: xlpra2; rcd1; qRT-PCR; prcd; miRNA expression profiles; Microarray; Inherited retinal disorders; erd; Canine models; Apoptomirs; | |
Others : 1217824 DOI : 10.1186/1471-2164-15-172 |
|
received in 2013-12-07, accepted in 2014-02-17, 发布年份 2014 | |
【 摘 要 】
Background
Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease.
Results
The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants.
Conclusions
Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process.
【 授权许可】
2014 Genini et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128175002981.pdf | 480KB | download | |
Figure 6. | 59KB | Image | download |
Figure 5. | 71KB | Image | download |
Figure 4. | 89KB | Image | download |
Figure 3. | 55KB | Image | download |
Figure 2. | 87KB | Image | download |
Figure 1. | 108KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Swaroop A, Kim D, Forrest D: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 2010, 11(8):563-576.
- [2]Retinal Information Network (RetNet) [http://www.sph.uth.tmc.edu/RetNet/ webcite]
- [3]Baehr W, Frederick JM: Naturally occurring animal models with outer retina phenotypes. Vision Res 2009, 49(22):2636-2652.
- [4]Miyadera K, Acland GM, Aguirre GD: Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome 2012, 23(1–2):40-61.
- [5]Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS: Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010, 11(4):273-284.
- [6]Wenzel A, Grimm C, Samardzija M, Reme CE: Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 2005, 24(2):275-306.
- [7]Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B: Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 2006, 83(2):380-389.
- [8]Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekstrom P, Paquet-Durand F: Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008, 38(3):253-269.
- [9]Cottet S, Schorderet DF: Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 2009, 9(3):375-383.
- [10]Cvekl A, Mitton KP: Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity (Edinb) 2010, 105(1):135-151.
- [11]Wang Z: MicroRNA: a matter of life or death. World J Biol Chem 2010, 1(4):41-54.
- [12]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27(1):91-105.
- [13]Thomson DW, Bracken CP, Goodall GJ: Experimental strategies for microRNA target identification. Nucleic Acids Res 2011, 39(16):6845-6853.
- [14]miRBase 20: the microRNA database [http://www.mirbase.org webcite]
- [15]miR2Disease database http://www.mir2disease.org webcite
- [16]Maiorano NA, Hindges R: Non-coding RNAs in retinal development. Int J Mol Sci 2012, 13(1):558-578.
- [17]La Torre A, Georgi S, Reh TA: Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci U S A 2013, 110(26):E2362-70.
- [18]Cremisi F: MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 2013, 7:141.
- [19]Soundara Pandi SP, Chen M, Guduric-Fuchs J, Xu H, Simpson DA: Extremely complex populations of small RNAs in the mouse retina and RPE/choroid. Invest Ophthalmol Vis Sci 2013, 54(13):8140-8151.
- [20]Vecchione A, Croce CM: Apoptomirs: small molecules have gained the license to kill. Endocr Relat Cancer 2010, 17(1):F37-50.
- [21]Aranha MM, Santos DM, Xavier JM, Low WC, Steer CJ, Sola S, Rodrigues CM: Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genomics 2010, 11:514. BioMed Central Full Text
- [22]Garofalo M, Condorelli GL, Croce CM, Condorelli G: MicroRNAs as regulators of death receptors signaling. Cell Death Differ 2010, 17(2):200-208.
- [23]Wang Y, Lee CG: MicroRNA and cancer–focus on apoptosis. J Cell Mol Med 2009, 13(1):12-23.
- [24]Beltran WA, Hammond P, Acland GM, Aguirre GD: A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006, 47(4):1669-1681.
- [25]Farber DB, Danciger JS, Aguirre G: The beta subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia 1. Neuron 1992, 9(2):349-356.
- [26]Acland GM, Aguirre GD: Retinal degenerations in the dog: IV. Early retinal degeneration (erd) in Norwegian elkhounds. Exp Eye Res 1987, 44(4):491-521.
- [27]Berta AI, Boesze-Battaglia K, Genini S, Goldstein O, O’Brien PJ, Szel A, Acland GM, Beltran WA, Aguirre GD: Photoreceptor cell death, proliferation and formation of hybrid Rod/S-cone photoreceptors in the degenerating STK38L mutant retina. PLoS One 2011, 6(9):e24074.
- [28]Pach J, Kohl S, Gekeler F, Zobor D: Identification of a novel mutation in the PRCD gene causing autosomal recessive retinitis pigmentosa in a Turkish family. Mol Vis 2013, 19:1350-1355.
- [29]Zangerl B, Goldstein O, Philp AR, Lindauer SJ, Pearce-Kelling SE, Mullins RF, Graphodatsky AS, Ripoll D, Felix JS, Stone EM, Acland GM, Aguirre GD: Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006, 88(5):551-563.
- [30]Forrester JV: Bowman lecture on the role of inflammation in degenerative disease of the eye. Eye (Lond) 2013, 27(3):340-352.
- [31]Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T: Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology 2013, 120(1):e5-e12.
- [32]Viringipurampeer IA, Bashar AE, Gregory-Evans CY, Moritz OL, Gregory-Evans K: Targeting inflammation in emerging therapies for genetic retinal disease. Int J Inflam 2013, 2013:581751.
- [33]Aguirre GD, Acland GM: Variation in retinal degeneration phenotype inherited at the prcd locus. Exp Eye Res 1988, 46(5):663-687.
- [34]Strauss O: The retinal pigment epithelium in visual function. Physiol Rev 2005, 85(3):845-881.
- [35]Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D: MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 2007, 282(34):25053-25066.
- [36]Xu S: microRNA expression in the eyes and their significance in relation to functions. Prog Retin Eye Res 2009, 28(2):87-116.
- [37]Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P, Palfi A, Farrar GJ: Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 2007, 8(11):R248. BioMed Central Full Text
- [38]Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P, Farrar GJ, Palfi A: A common microRNA signature in mouse models of retinal degeneration. Exp Eye Res 2008, 87(6):529-534.
- [39]Walker JC, Harland RM: microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009, 23(9):1046-1051.
- [40]Zhu Q, Sun W, Okano K, Chen Y, Zhang N, Maeda T, Palczewski K: Sponge transgenic mouse model reveals important roles for the MicroRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J Biol Chem 2011, 286(36):31749-31760.
- [41]Lumayag S, Haldin CE, Corbett NJ, Wahlin KJ, Cowan C, Turturro S, Larsen PE, Kovacs B, Witmer PD, Valle D, Zack DJ, Nicholson DA, Xu S: Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 2013, 110(6):E507-16.
- [42]Nagai R, Hashimoto R, Tanaka Y, Taguchi O, Sato M, Matsukage A, Yamaguchi M: Syntrophin-2 is required for eye development in Drosophila. Exp Cell Res 2010, 316(2):272-285.
- [43]Gibson R, Fletcher EL, Vingrys AJ, Zhu Y, Vessey KA, Kalloniatis M: Functional and neurochemical development in the normal and degenerating mouse retina. J Comp Neurol 2013, 521(6):1251-1267.
- [44]Zencak D, Schouwey K, Chen D, Ekstrom P, Tanger E, Bremner R, van Lohuizen M, Arsenijevic Y: Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 2013, 110(7):E593-601.
- [45]Beltran WA, Allore HG, Johnson E, Towle V, Tao W, Acland GM, Aguirre GD, Zeiss CJ: CREB1/ATF1 activation in photoreceptor degeneration and protection. Invest Ophthalmol Vis Sci 2009, 50(11):5355-5363.
- [46]Ritchie W, Rasko JE, Flamant S: MicroRNA target prediction and validation. Adv Exp Med Biol 2013, 774:39-53.
- [47]Genini S, Zangerl B, Slavik J, Acland G, Beltran WA, Aguirre GD: Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration. Invest Ophthalmol Vis Sci 2010, 51(11):6038-6050.
- [48]Arora A, Guduric-Fuchs J, Harwood L, Dellett M, Cogliati T, Simpson DA: Prediction of microRNAs affecting mRNA expression during retinal development. BMC Dev Biol 2010, 10:1. BioMed Central Full Text
- [49]Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, Rainaldi G, Wang X, Evangelista M, Barsacchi G, Cremisi F: MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci U S A 2009, 106(50):21179-21184.
- [50]Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM: MacPherson D: miR-17 92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011, 25(16):1734-1745.
- [51]Aguirre G, Alligood J, O’Brien P, Buyukmihci N: Pathogenesis of progressive rod-cone degeneration in miniature poodles. Invest Ophthalmol Vis Sci 1982, 23(5):610-630.
- [52]Aguirre G, O’Brien P: Morphological and biochemical studies of canine progressive rod-cone degeneration. 3H-fucose autoradiography. Invest Ophthalmol Vis Sci 1986, 27(5):635-655.
- [53]Hackler L Jr, Wan J, Swaroop A, Qian J, Zack DJ: MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci 2010, 51(4):1823-1831.
- [54]Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN: Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol 2012, 3(1):105-116.
- [55]Korenbrot JI, Fernald RD: Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature 1989, 337(6206):454-457.
- [56]Zhang Q, Acland GM, Wu WX, Johnson JL, Pearce-Kelling S, Tulloch B, Vervoort R, Wright AF, Aguirre GD: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum Mol Genet 2002, 11(9):993-1003.
- [57]Rachel RA, Li T, Swaroop A: Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012, 1(1):22. BioMed Central Full Text
- [58]Suber ML, Pittler SJ, Qin N, Wright GC, Holcombe V, Lee RH, Craft CM, Lolley RN, Baehr W, Hurwitz RL: Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci U S A 1993, 90(9):3968-3972.
- [59]Ray K, Baldwin VJ, Acland GM, Blanton SH, Aguirre GD: Cosegregation of codon 807 mutation of the canine rod cGMP phosphodiesterase beta gene and rcd1. Invest Ophthalmol Vis Sci 1994, 35(13):4291-4299.
- [60]Goldstein O, Kukekova AV, Aguirre GD, Acland GM: Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 2010, 96(6):362-368.
- [61]Chiba S, Amagai Y, Homma Y, Fukuda M, Mizuno K: NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J 2013, 32(6):874-885.
- [62]Ingenuity systems [http://www.ingenuity.com webcite]
- [63]microRNA.org website [http://www.microrna.org webcite]
- [64]Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010, 11(8):R90. BioMed Central Full Text
- [65]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001, 25(4):402-408.
- [66]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
- [67]Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X: miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 2010, 10:354. BioMed Central Full Text
- [68]Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB: MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol 2011, 8(4):557-564.
- [69]Bejarano F, Smibert P, Lai EC: miR-9a prevents apoptosis during wing development by repressing drosophila LIM-only. Dev Biol 2010, 338(1):63-73.
- [70]Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, Li QJ, Lowe SW, Hannon GJ, He L: miR-19 is a key oncogenic component of mir-17-92. Genes Dev 2009, 23(24):2839-2849.
- [71]Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, Munker R, Volinia S, Boccadoro M, Garzon R, Palumbo A, Aqeilan RI, Croce CM: MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 2008, 105(35):12885-12890.
- [72]Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007, 100(11):1579-1588.
- [73]Park JK, Lee EJ, Esau C, Schmittgen TD: Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 2009, 38(7):e190-9.
- [74]Liu J, van Mil A, Vrijsen K, Zhao J, Gao L, Metz CH, Goumans MJ, Doevendans PA, Sluijter JP: MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. J Cell Mol Med 2011, 15(7):1474-1482.
- [75]Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, Wu SX, Huang J, Chen J, Luo ZJ: Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol 2011, 225(2):232-242.
- [76]Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, Pu PY, Cheng JQ, Kang CS: MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 2010, 9:229. BioMed Central Full Text
- [77]Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q, Qian C: Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 2010, 9(7):554-561.
- [78]Lin CJ, Gong HY, Tseng HC, Wang WL, Wu L: miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2008, 375(3):315-320.
- [79]Dyrskjot L, Ostenfeld MS, Bramsen JB, Silahtaroglu AN, Lamy P, Ramanathan R, Fristrup N, Jensen JL, Andersen CL, Zieger K, Kauppinen S, Ulhoi BP, Kjems J, Borre M, Orntoft TF: Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 2009, 69(11):4851-4860.
- [80]Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, Perdomo C, Kotton D, Vaziri C, Anderlind C, Spira A, Cardoso WV, Lu J: miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010, 9(9):1809-1818.
- [81]Silva VA, Polesskaya A, Sousa TA, Correa VM, Andre ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL: Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011, 17:2228-2240.
- [82]Kole AJ, Swahari V, Hammond SM, Deshmukh M: miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 2011, 25(2):125-130.
- [83]Park SY, Lee JH, Ha M, Nam JW, Kim VN: miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009, 16(1):23-29.
- [84]Liu X, Nelson A, Wang X, Kanaji N, Kim M, Sato T, Nakanishi M, Li Y, Sun J, Michalski J, Patil A, Basma H, Rennard SI: MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Commun 2009, 380(1):177-182.
- [85]Suzuki Y, Kim HW, Ashraf M, Haider HK: Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 2010, 299(4):H1077-82.
- [86]Hou Z, Xie L, Yu L, Qian X, Liu B: MicroRNA-146a is down-regulated in gastric cancer and regulates cell proliferation and apoptosis. Med Oncol 2012, 29(2):886-892.
- [87]Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kim CW: MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res 2011, 17(14):4761-4771.