期刊论文详细信息
BMC Microbiology
Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis
Michael J Stanhope7  Paolo Moroni6  Linda Tikofsky5  Brenda Werner4  Ping Lang3  Tristan Lefébure1  Paulina D Pavinski Bitar7  Ruth N Zadoks2  Vincent P Richards7 
[1] Current address: Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France;Current address: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK;Current address: Department of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA;Quality Milk Production Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA;Current address: 4055 McIntyre Road, Trumansburg, NY, 14886, USA;Università degli Studi di Milano, Department of Health, Animal Science and Food Safety, Via Celoria 10, 20133, Milan, Italy;Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
关键词: Canine;    Bovine;    Host adaptation;    Lateral gene transfer;    Mastitis;    Zoonotic;    Pathogen;    Comparative genomics;    Streptococcus canis;   
Others  :  1144728
DOI  :  10.1186/1471-2180-12-293
 received in 2012-08-14, accepted in 2012-12-06,  发布年份 2012
PDF
【 摘 要 】

Background

Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen.

Results

Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche.

Conclusion

This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen.

【 授权许可】

   
2012 Richards et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331005611350.pdf 982KB PDF download
Figure 4. 79KB Image download
Figure 3. 61KB Image download
Figure 2. 33KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Devriese LA, Hommez J, Kilpper-Balz R, Schleifer KH: Streptococcus canis sp. nov.: a species of group G streptococci from animals. Int J Syst Bacteriol 1986, 36(3):422-425.
  • [2]Vandamme P, Pot B, Falsen E, Kersters K, Devriese LA: Taxonomic study of Lancefield streptococcal groups C, G, and L (Streptococcus dysgalactiae) and proposal of S. dysgalactiae subsp. equisimilis subsp. nov. Int J Syst Bacteriol 1996, 46(3):774-781.
  • [3]Murase T, Morita T, Sunagawa Y, Sawada M, Shimada A, Sato K, Hikasa Y: Isolation of Streptococcus canis from a Japanese raccoon dog with fibrinous pleuropneumonia. Vet Rec 2003, 153(15):471-472.
  • [4]Iglauer F, Kunstyr I, Morstedt R, Farouq H, Wullenweber M, Damsch S: Streptococcus canis arthritis in a cat breeding colony. J Exp Anim Sci 1991, 34(2):59-65.
  • [5]Pesavento PA, Bannasch MJ, Bachmann R, Byrne BA, Hurley KF: Fatal Streptococcus canis infections in intensively housed shelter cats. Vet Pathol 2007, 44(2):218-221.
  • [6]Kruger EF, Byrne BA, Pesavento P, Hurley KF, Lindsay LL, Sykes JE: Relationship between clinical manifestations and pulsed-field gel profiles of Streptococcus canis isolates from dogs and cats. Vet Microbiol 2010, 146(1–2):167-171.
  • [7]Matsuu A, Kanda T, Sugiyama A, Murase T, Hikasa Y: Mitral stenosis with bacterial myocarditis in a cat. J Vet Med Sci 2007, 69(11):1171-1174.
  • [8]Sura R, Hinckley LS, Risatti GR, Smyth JA: Fatal necrotising fasciitis and myositis in a cat associated with Streptococcus canis. Vet Rec 2008, 162(14):450-453.
  • [9]DeWinter LM, Prescott JF: Relatedness of Streptococcus canis from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Can J Vet Res 1999, 63(2):90-95.
  • [10]Hassan AA, Akineden O, Usleber E: Identification of Streptococcus canis isolated from milk of dairy cows with subclinical mastitis. J Clin Microbiol 2005, 43(3):1234-1238.
  • [11]Chaffer M, Friedman S, Saran A, Younis A: An outbreak of Streptococcus canis mastitis in a dairy herd in Israel. N Z Vet J 2005, 53(4):261-264.
  • [12]Tikofsky LL, Zadoks RN: Cross-infection between cats and cows: origin and control of Streptococcus canis mastitis in a dairy herd. J Dairy Sci 2005, 88(8):2707-2713.
  • [13]Galperine T, Cazorla C, Blanchard E, Boineau F, Ragnaud JM, Neau D: Streptococcus canis infections in humans: retrospective study of 54 patients. J Infect 2007, 55(1):23-26.
  • [14]Lam MM, Clarridge JE 3rd, Young EJ, Mizuki S: The other group G Streptococcus: increased detection of Streptococcus canis ulcer infections in dog owners. J Clin Microbiol 2007, 45(7):2327-2329.
  • [15]Whatmore AM, Engler KH, Gudmundsdottir G, Efstratiou A: Identification of isolates of Streptococcus canis infecting humans. J Clin Microbiol 2001, 39(11):4196-4199.
  • [16]Bert F, Lambert-Zechovsky N: Septicemia caused by Streptococcus canis in a human. J Clin Microbiol 1997, 35(3):777-779.
  • [17]Lefebure T, Richards VP, Lang P, Pavinski-Bitar P, Stanhope MJ: Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae. PLoS One 2012, 7(5):e37607.
  • [18]Jensen A, Kilian M: Delineation of Streptococcus dysgalactiae, its subspecies, and its clinical and phylogenetic relationship to Streptococcus pyogenes. J Clin Microbiol 2012, 50(1):113-126.
  • [19]Shinozaki-Kuwahara N, Takada K, Hirasawa M: Streptococcus ursoris sp. nov., isolated from the oral cavities of bears. Int J Syst Evol Microbiol 2011, 61(Pt 1):40-44.
  • [20]Tapp J, Thollesson M, Herrmann B: Phylogenetic relationships and genotyping of the genus Streptococcus by sequence determination of the RNase P RNA gene, rnpB. Int J Syst Evol Microbiol 2003, 53(Pt 6):1861-1871.
  • [21]Suzuki H, Lefebure T, Hubisz MJ, Pavinski Bitar P, Lang P, Siepel A, Stanhope MJ: Comparative genomic analysis of the Streptococcus dysgalactiae species group: gene content, molecular adaptation, and promoter evolution. Genome Biol Evol 2011, 3:168-185.
  • [22]Broyles LN, Van Beneden C, Beall B, Facklam R, Shewmaker PL, Malpiedi P, Daily P, Reingold A, Farley MM: Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis 2009, 48(6):706-712.
  • [23]DeWinter LM, Low DE, Prescott JF: Virulence of Streptococcus canis from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Vet Microbiol 1999, 70(1–2):95-110.
  • [24]Kanaya S, Yamada Y, Kudo Y, Ikemura T: Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 1999, 238(1):143-155.
  • [25]Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE: Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 2005, 33(4):1141-1153.
  • [26]Stothard P, Wishart DS: Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21(4):537-539.
  • [27]Bhakdi S, Tranum-Jensen J, Sziegoleit A: Mechanism of membrane damage by streptolysin-O. Infect Immun 1985, 47(1):52-60.
  • [28]Lang SH, Palmer M: Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J Biol Chem 2003, 278(40):38167-38173.
  • [29]Bisno AL, Brito MO, Collins CM: Molecular basis of group A streptococcal virulence. Lancet Infect Dis 2003, 3(4):191-200.
  • [30]Panchaud A, Guy L, Collyn F, Haenni M, Nakata M, Podbielski A, Moreillon P, Roten CA: M-protein and other intrinsic virulence factors of Streptococcus pyogenes are encoded on an ancient pathogenicity island. BMC Genomics 2009, 10:198. BioMed Central Full Text
  • [31]Yang J, Liu Y, Xu J, Li B: Characterization of a new protective antigen of Streptococcus canis. Vet Res Commun 2010, 34(5):413-421.
  • [32]Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC: Genetic locus for streptolysin S production by group A Streptococcus. Infect Immun 2000, 68(7):4245-4254.
  • [33]Todd E: The differentiation of two distinct serologic varieties of streptolysin, streptolysin O and streptolysin S. J Pathol Bacteriol 1938, 47:423-445.
  • [34]Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V: Streptolysin S and necrotising infections produced by group G Streptococcus. Lancet 2002, 359(9301):124-129.
  • [35]Fuller JD, Camus AC, Duncan CL, Nizet V, Bast DJ, Thune RL, Low DE, De Azavedo JC: Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun 2002, 70(10):5730-5739.
  • [36]Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP: Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 2011, 9(9):670-681.
  • [37]Koh TH, Sng LH, Yuen SM, Thomas CK, Tan PL, Tan SH, Wong NS: Streptococcal cellulitis following preparation of fresh raw seafood. Zoonoses Public Health 2009, 56(4):206-208.
  • [38]Sun JR, Yan JC, Yeh CY, Lee SY, Lu JJ: Invasive infection with Streptococcus iniae in Taiwan. J Med Microbiol 2007, 56(Pt 9):1246-1249.
  • [39]Facklam R, Elliott J, Shewmaker L, Reingold A: Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J Clin Microbiol 2005, 43(2):933-937.
  • [40]Bekal S, Gaudreau C, Laurence RA, Simoneau E, Raynal L: Streptococcus pseudoporcinus sp. nov., a novel species isolated from the genitourinary tract of women. J Clin Microbiol 2006, 44(7):2584-2586.
  • [41]Weinstein MR, Litt M, Kertesz DA, Wyper P, Rose D, Coulter M, McGeer A, Facklam R, Ostach C, Willey BM, et al.: Invasive infections due to a fish pathogen, Streptococcus iniae. S. iniae Study Group. N Engl J Med 1997, 337(9):589-594.
  • [42]Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T: Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 1995, 45(2):406-408.
  • [43]Jedrzejas MJ: Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 2001, 65(2):187-207. first page, table of contents
  • [44]Harvill ET, Preston A, Cotter PA, Allen AG, Maskell DJ, Miller JF: Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect Immun 2000, 68(12):6720-6728.
  • [45]Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couve E, Lalioui L, Poyart C, et al.: Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 2002, 45(6):1499-1513.
  • [46]Chastanet A, Prudhomme M, Claverys JP, Msadek T: Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 2001, 183(24):7295-7307.
  • [47]Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H, Hacker J: Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 1994, 62(2):606-614.
  • [48]Dobrindt U, Blum-Oehler G, Nagy G, Schneider G, Johann A, Gottschalk G, Hacker J: Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 2002, 70(11):6365-6372.
  • [49]Sampath J, Vijayakumar MN: Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252. Plasmid 1998, 39(1):63-76.
  • [50]Saunders J, Saunders V: Bacterial transformation with plasmid DNA. In Methods in Microbiology Volume 21. Edited by Grinsted J, Bennett P. London: Academic Press; 1988.
  • [51]Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, Bailey JR, Parnell MJ, Hoe NP, Adams GG, et al.: Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 2005, 102(5):1679-1684.
  • [52]Richards VP, Lang P, Bitar PD, Lefebure T, Schukken YH, Zadoks RN, Stanhope MJ: Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infect Genet Evol 2011, 11(6):1263-1275.
  • [53]Sørensen UB, Poulsen K, Ghezzo C, Margarit I, Kilian M: Emergence and Global Dissemination of Host-Specific Streptococcus agalactiae Clones. MBio 2010., 1(3)
  • [54]Brochet M, Couve E, Zouine M, Vallaeys T, Rusniok C, Lamy MC, Buchrieser C, Trieu-Cuot P, Kunst F, Poyart C, et al.: Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect 2006, 8(5):1227-1243.
  • [55]Bisharat N, Crook DW, Leigh J, Harding RM, Ward PN, Coffey TJ, Maiden MC, Peto T, Jones N: Hyperinvasive neonatal group B Streptococcus has arisen from a bovine ancestor. J Clin Microbiol 2004, 42(5):2161-2167.
  • [56]Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H: Prophage genomics. Microbiol Mol Biol Rev 2003, 67(2):238-276.
  • [57]Lucchini S, Desiere F, Brussow H: Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 1999, 263(2):427-435.
  • [58]Li J, Kasper DL, Ausubel FM, Rosner B, Michel JL: Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc Natl Acad Sci U S A 1997, 94(24):13251-13256.
  • [59]Peltroche-Llacsahuanga H, Frye B, Haase G: Isolation of Streptococcus urinalis from a human blood culture. J Med Microbiol 2012, 61(Pt 5):740-742.
  • [60]Collins MD, Hutson RA, Falsen E, Nikolaitchouk N, LaClaire L, Facklam RR: An unusual Streptococcus from human urine, Streptococcus urinalis sp. nov. Int J Syst Evol Microbiol 2000, 50 Pt 3:1173-1178.
  • [61]Rabel C, Grahn AM, Lurz R, Lanka E: The VirB4 family of proposed traffic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J Bacteriol 2003, 185(3):1045-1058.
  • [62]Haenni M, Saras E, Bertin S, Leblond P, Madec JY, Payot S: Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae,S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol 2010, 76(24):7957-7965.
  • [63]Paoletti C, Foglia G, Princivalli MS, Magi G, Guaglianone E, Donelli G, Pruzzo C, Biavasco F, Facinelli B: Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings. J Antimicrob Chemother 2007, 59(5):1005-1009.
  • [64]Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, et al.: Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 2001, 98(8):4658-4663.
  • [65]Pryor SM, Cursons RT, Williamson JH, Lacy-Hulbert SJ: Experimentally induced intramammary infection with multiple strains of Streptococcus uberis. J Dairy Sci 2009, 92(11):5467-5475.
  • [66]Zadoks RN, Schukken YH: Use of molecular epidemiology in veterinary practice. Vet Clin North Am Food Anim Pract 2006, 22(1):229-261.
  • [67]Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
  • [68]Didelot X, Falush D: Inference of bacterial microevolution using multilocus sequence data. Genetics 2007, 175(3):1251-1266.
  • [69]Guttman DS, Dykhuizen DE: Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 1994, 266(5189):1380-1383.
  • [70]Vos M, Didelot X: A comparison of homologous recombination rates in bacteria and archaea. ISME J 2009, 3(2):199-208.
  • [71]Lang P, Lefebure T, Wang W, Zadoks RN, Schukken Y, Stanhope MJ: Gene content differences across strains of Streptococcus uberis identified using oligonucleotide microarray comparative genomic hybridization. Infect Genet Evol 2009, 9(2):179-188.
  • [72]Fraser C, Hanage WP, Spratt BG: Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A 2005, 102(6):1968-1973.
  • [73]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004, 186(5):1518-1530.
  • [74]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [75]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164(4):1567-1587.
  • [76]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14(8):2611-2620.
  • [77]Persson Y, Nyman AK, Gronlund-Andersson U: Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand 2011, 53:36. BioMed Central Full Text
  • [78]Piepers S, De Meulemeester L, de Kruif A, Opsomer G, Barkema HW, De Vliegher S: Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. J Dairy Res 2007, 74(4):478-483.
  • [79]Sampimon O, Barkema HW, Berends I, Sol J, Lam T: Prevalence of intramammary infection in Dutch dairy herds. J Dairy Res 2009, 76(2):129-136.
  • [80]Petrovski KR, Heuer C, Parkinson TJ, Williamson NB: The incidence and aetiology of clinical bovine mastitis on 14 farms in Northland, New Zealand. N Z Vet J 2009, 57(2):109-115.
  • [81]Guelat-Brechbuehl M, Thomann A, Albini S, Moret-Stalder S, Reist M, Bodmer M, Michel A, Niederberger MD, Kaufmann T: Cross-sectional study of Streptococcus species in quarter milk samples of dairy cows in the canton of Bern, Switzerland. Vet Rec 2010, 167(6):211-215.
  • [82]Bengtsson B, Unnerstad HE, Ekman T, Artursson K, Nilsson-Ost M, Waller KP: Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet Microbiol 2009, 136(1–2):142-149.
  • [83]Avise JC: Phylogeography. The history and formation of species. Cambridge, MA: Harvard University Press; 2000.
  • [84]Templeton AR: Population genetics and microevolutionary theory. New Jersey: Wiley; 2006.
  • [85]Delorme C, Poyart C, Ehrlich SD, Renault P: Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 2007, 189(4):1330-1341.
  • [86]Davies MR, Tran TN, McMillan DJ, Gardiner DL, Currie BJ, Sriprakash KS: Inter-species genetic movement may blur the epidemiology of streptococcal diseases in endemic regions. Microbes Infect 2005, 7(9–10):1128-1138.
  • [87]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [88]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [89]van Dongen S: Graph clustering by flow simulation. 2000. [University of Utrecht]
  • [90]Brohee S, van Helden J: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 2006, 7:488. BioMed Central Full Text
  • [91]Enright MC, Spratt BG: A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 1998, 144(Pt 11):3049-3060.
  • [92]Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE: Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 2001, 69(4):2416-2427.
  • [93]Goh SH, Santucci Z, Kloos WE, Faltyn M, George CG, Driedger D, Hemmingsen SM: Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 1997, 35(12):3116-3121.
  • [94]Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG: Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 1999, 37(11):3497-3503.
  • [95]Zadoks RN, Schukken YH, Wiedmann M: Multilocus sequence typing of Streptococcus uberis provides sensitive and epidemiologically relevant subtype information and reveals positive selection in the virulence gene pauA. J Clin Microbiol 2005, 43(5):2407-2417.
  • [96]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [97]Rozas J, Sánchez-DelBarrio J, Messegyer X, Rozas R: DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
  • [98]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  文献评价指标  
  下载次数:44次 浏览次数:9次