期刊论文详细信息
BMC Medical Genomics
Adipose Co-expression networks across Finns and Mexicans identify novel triglyceride-associated genes
Päivi Pajukanta8  Carlos A Aguilar-Salinas3  Markku Laakso2  Teresa Tusie-Luna1  Jaakko Kaprio6  Johanna Kuusisto2  Laura Riba1  Ivette Cruz-Bautista3  Mete Civelek5  Aila Rissanen6  Daphna Weissglas-Volkov8  Elina Nikkola8  Rita M Cantor8  Kirsi H Pietiläinen4  Steve Horvath7  Blake E Haas8 
[1] Molecular Biology and Genomic Medicine Unit, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubiran, and Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico;Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland;Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico;Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland;Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA;Obesity Research Unit, Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland;Department of Biostatistics, David Geffen School of Medicine at the University of California, Los Angeles, USA;Department of Human Genetics and David Geffen School of Medicine at UCLA, Gonda Center, Room 6335B, 695 Charles E. Young Drive South, Los Angeles, California, 90095-7088, USA
关键词: Weighted gene co-expression network analysis;    Adipose tissue;    Triglycerides;    RNA sequencing;    Finns;    Mexicans;   
Others  :  1121250
DOI  :  10.1186/1755-8794-5-61
 received in 2012-06-08, accepted in 2012-11-27,  发布年份 2012
PDF
【 摘 要 】

Background

High serum triglyceride (TG) levels is an established risk factor for coronary heart disease (CHD). Fat is stored in the form of TGs in human adipose tissue. We hypothesized that gene co-expression networks in human adipose tissue may be correlated with serum TG levels and help reveal novel genes involved in TG regulation.

Methods

Gene co-expression networks were constructed from two Finnish and one Mexican study sample using the blockwiseModules R function in Weighted Gene Co-expression Network Analysis (WGCNA). Overlap between TG-associated networks from each of the three study samples were calculated using a Fisher’s Exact test. Gene ontology was used to determine known pathways enriched in each TG-associated network.

Results

We measured gene expression in adipose samples from two Finnish and one Mexican study sample. In each study sample, we observed a gene co-expression network that was significantly associated with serum TG levels. The TG modules observed in Finns and Mexicans significantly overlapped and shared 34 genes. Seven of the 34 genes (ARHGAP30, CCR1, CXCL16, FERMT3, HCST, RNASET2, SELPG) were identified as the key hub genes of all three TG modules. Furthermore, two of the 34 genes (ARHGAP9, LST1) reside in previous TG GWAS regions, suggesting them as the regional candidates underlying the GWAS signals.

Conclusions

This study presents a novel adipose gene co-expression network with 34 genes significantly correlated with serum TG across populations.

【 授权许可】

   
2012 Haas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211023322520.pdf 505KB PDF download
Figure 3. 16KB Image download
Figure 2. 29KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, Boekholdt SM, Ouwehand W, Watkins H, Samani NJ, Saleheen D, Lawlor D, Reilly MP, Hingorani AD, Talmud PJ, Danesh J, Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration: Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010, 375:1634-1639.
  • [2]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466:707-713.
  • [3]Weiss LA, Pan L, Abney M, Ober C: The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006, 38:218-222.
  • [4]Aguilar-Salinas CA, Gómez-Pérez FJ, Rull J, Villalpando S, Barquera S, Rojas R: Prevalence of dyslipidemias in the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex 2006, 52:S44-S53.
  • [5]Norio R, Nevanlinna HR, Perheentupa J: Hereditary diseases in Finland; rare flora in rare soul. Ann Clin Res 1973, 5:101-141.
  • [6]Nishimura S, Manabe I, Nagai R: Adipose tissue inflammation in obesity and metabolic syndrome. Discov Med 2009, 8:55-60.
  • [7]Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS: Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol 2007, 293:G1-4.
  • [8]Haas BE, Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Vergnes L, Cruz-Bautista I, Riba L, Stancakova A, Kuusisto J, Soininen P, Kangas AJ, Ala-Korpela M, Tusie-Luna T, Laakso M, Pajukanta P: Evidence of how rs7575840 influences apolipoprotein B-containing lipid particles. Arterioscler Thromb Vasc Biol 2011, 31:1201-1207.
  • [9]Huertas-Vazquez A, Plaisier C, Weissglas-Volkov D, Sinsheimer J, Canizales-Quinteros S, Cruz-Bautista I, Nikkola E, Herrera-Hernandez M, Davila-Cervantes A, Tusie-Luna T, Taskinen MR, Aguilar-Salinas C, Pajukanta P: TCF7L2 is associated with high serum triacylglycerol and differentially expressed in adipose tissue in families with familial combined hyperlipidaemia. Diabetologia 2008, 51:62-69.
  • [10]Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T, Aguilar-Salinas C, Pajukanta P: A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009, 5:e1000642.
  • [11]Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008, 24:719-720.
  • [12]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559. BioMed Central Full Text
  • [13]Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S: Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLoS Genet 2006, 2:e130.
  • [14]Keller MP, Choi Y, Wang P, Davis DB, Rabaglia ME, Oler AT, Stapleton DS, Argmann C, Schueler KL, Edwards S, Steinberg HA, Chaibub Neto E, Kleinhanz R, Turner S, Hellerstein MK, Schadt EE, Yandell BS, Kendziorski C, Attie AD: A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 2008, 18:706-716.
  • [15]Price AL, Patterson N, Yu F, Cox DR, Waliszewska A, McDonald GJ, Tandon A, Schirmer C, Neubauer J, Bedoya G, Duque C, Villegas A, Bortolini MC, Salzano FM, Gallo C, Mazzotti G, Tello-Ruiz M, Riba L, Aguilar-Salinas CA, Canizales-Quinteros S, Menjivar M, Klitz W, Henderson B, Haiman CA, Winkler C, Tusie-Luna T, Ruiz-Linares A, Reich D: A genomewide admixture map for Latino populations. Am J Hum Genet 2007, 80:1024-1036.
  • [16]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 2009, 4:44-57.
  • [17]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the Comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [18]Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietiläinen KH: Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 2011, 52:1575-1582.
  • [19]Huertas-Vazquez A, Aguilar-Salinas C, Lusis AJ, Cantor RM, Canizales-Quinteros S, Lee JC, Mariana-Nuñez L, Riba-Ramirez RM, Jokiaho A, Tusie-Luna T, Pajukanta P: Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1. Arterioscler Thromb Vasc Biol 2006, 25:1985-1991.
  • [20]Lee JC, Weissglas-Volkov D, Kyttälä M, Dastani Z, Cantor RM, Sobel EM, Plaisier CL, Engert JC, van Greevenbroek MM, Kane JP, Malloy MJ, Pullinger CR, Huertas-Vazquez A, Aguilar-Salinas CA, Tusie-Luna T, de Bruin TW, Aouizerat BE, van der Kallen CC, Croce CM, Aqeilan RI, Marcil M, Viikari JS, Lehtimäki T, Raitakari OT, Kuusisto J, Laakso M, Taskinen MR, Genest J, Pajukanta P: WW-domain-containing oxidoreductase is associated with low plasma HDL-C levels. Am J Hum Genet 2008, 83:180-192.
  • [21]Stančáková A, Paananen J, Soininen P, Kangas AJ, Bonnycastle LL, Morken MA, Collins FS, Jackson AU, Boehnke ML, Kuusisto J, Ala-Korpela M, Laakso M: Effects of 34 Risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes 2011, 60:1608-1616.
  • [22]Inouye M, Kettunen J, Soininen P, Silander K, Ripatti S, Kumpula LS, Hämäläinen E, Jousilahti P, Kangas AJ, Männistö S, Savolainen MJ, Jula A, Leiviskä J, Palotie A, Salomaa V, Perola M, Ala-Korpela M, Peltonen L: Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol Syst Biol 2010, 6:441.
  • [23]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
  • [24]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [25]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [26]Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 2011, 12:R22. BioMed Central Full Text
  • [27]Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011, 27:2325-2329.
  • [28]Zhang B, Horvath S: General Framework for Weighted Gene Co-Expression Network Analysis. Stat Appl Genet Mol Biol 2005, 4:17.
  • [29]Horvath S, Dong J: Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput Biol 2008, 4:e1000117.
  • [30]Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? PloS Comp Biol 2011, 7:e1001057.
  • [31]Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S: Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 2011, 12:322. BioMed Central Full Text
  • [32]Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S, American Heart Association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease: Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011, 123:2292-2333.
  文献评价指标  
  下载次数:6次 浏览次数:7次