期刊论文详细信息
BMC Systems Biology
Detecting microRNAs of high influence on protein functional interaction networks: a prostate cancer case study
Reda Alhajj1  Quaid Morris3  Anna Goldenberg2  Gary D Bader3  Mohammed Alshalalfa4 
[1] Department of Computer Science, University of Calgary, Calgary, AB, Canada;Genetics and Genome Biology, Toronto, Canada;University of Toronto, and the Department of Molecular Genetics, University of Toronto, Toronto ON, Canada;Biotechnology Research Centre, Palestine Polytechnic University, Hebron, Palestine
关键词: High-influence miRNA;    Systems biology;    Protein interactions;    MiRNA;   
Others  :  1143662
DOI  :  10.1186/1752-0509-6-112
 received in 2012-05-23, accepted in 2012-08-14,  发布年份 2012
PDF
【 摘 要 】

Background

The use of biological molecular network information for diagnostic and prognostic purposes and elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets relevant for prostate cancer treatment.

Results

Our findings demonstrate that a miRNA’s functional role can be explained by its target protein connectivity within a physical and functional interaction network. To detect miRNAs with high influence on target protein modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and could explain most of the gene expression changes in our analyzed prostate cancer data set.

Conclusions

We describe a novel method to identify active miRNA-target modules relevant to prostate cancer progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used in clinical investigations for prostate cancer treatment.

【 授权许可】

   
2012 Alshalalfa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329171329906.pdf 3680KB PDF download
Figure 9. 82KB Image download
Figure 8. 53KB Image download
Figure 7. 53KB Image download
Figure 6. 144KB Image download
Figure 5. 138KB Image download
Figure 4. 88KB Image download
Figure 3. 159KB Image download
Figure 2. 56KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hornberg J, Bruggeman F, Westerhoff H, Lankelma J: Cancer: a Systems Biology disease. Biosystems 2006, 83:81-90.
  • [2]Ambros V: The function of animal miRNAs. Nature 2004, 431:350-355.
  • [3]Sevli S, Uzumcu A, Solak M, Ittmann M, Ozen M: The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis 2010, 13:208-217.
  • [4]Rossi J: Stopping RNA interference at the seed. Nat Genet 2011, 43:288-289.
  • [5]Pang Y, Young C, Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin 2010, 42:363-369.
  • [6]Watahiki A, Wang Y, Morris J, Dennis K, ODwyer H, Gleave M, Gout P, Wang Y: MicroRNAs associated with metastatic prostate cancer. PLoS One 2011, 6:e24950.
  • [7]He L, Hannon G: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5:631.
  • [8]Calin G, Croce C: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6:857-866.
  • [9]Esquela-Kerscher A, Slack F: Oncomirs microRNAs with a role in cancer. Nat Rev Cancer 2006, 6:259-269.
  • [10]Cho J, Gelinas R, Wang K, Etheridge A, Piper M, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, Marsh C, Galas D: Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics 2011, 4:8.
  • [11]Lewis B, Shih I, Jones-Rhoades M, Bartel D, Burge C: Prediction of Mammalian MicroRNA Targets. Cell 2003, 115:787-798.
  • [12]Mukherji S, Ebert M, Zheng G, Tsang J, Sharp P, Oudenaarden A: MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011, 43:854-859.
  • [13]Arvey A, Larsson E, Sander C, Leslie C, Marks D: Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 2010, 6:363.
  • [14]Sumazin P, Yang X, Chiu H, Chung W, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A: An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma. Cell 2011, 147:370-381.
  • [15]Yue D, Liu H, Huang Y: Survey of Computational Algorithms for MicroRNA Target Prediction. Curr Genomics 2009, 10:478-492.
  • [16]Huang J, Babak T, Corson T, Chua G, Khan S, Gallie B, Hughes T, Blencowe B, Frey B, Morris Q: Using expression profiling data to identify human microRNA targets. Nat Methods 2007, 4:1045-1049.
  • [17]Ozen M, Creighton C, Ozdemir M, Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008, 27:1788-1793.
  • [18]Trang P, Weidhaas J, Slack F: MicroRNAs as potential cancer therapeutics. Oncogene 2008, 27:S52-S57.
  • [19]Miska E, Alvarez-Saavedra E, Abbott A, Lau N, Hellman A, McGonagle S, Bartel D, Ambros V, Horvitz H: Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability. PLOS Genet 2007, 3:e215.
  • [20]Jayaswal V, Lutherborrow M, Ma D, Yang Y: Identification of microRNA-mRNA modules using microarray data. BMC Genomics 2011, 12:138.
  • [21]Liu B, Lia J, Tsykin A: Discovery of functional miRNAmRNA regulatory modules with computational methods. J of Biomed Informatics 2009, 42:685-691.
  • [22]Sualp M, Can T: Using network context as a filter for miRNA target prediction. Biosystems 2011, 105:201-209.
  • [23]Xu J, Li C, Lv J, Li Y, Xiao Y, Shao T, Huo X, Li X, Zou Y, Han Q, Li X, Wang L, Ren H: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol Cancer Ther 2011, 10:1857-1866.
  • [24]Sass S, Dietmann S, Burk U, Brabletz S, Lutter D, Kowarsch A, Klaus F, Mayer K, Brabletz T, Ruepp A, Theis F, Wang Y: MicroRNAs coordinately regulate protein complexes. BMC Syst Biol 2011, 5:136.
  • [25]Hsu C, Juan H, Huang H: Characterization of microRNA-regulated protein-protein interaction network. Proteomics 2008, 8:1975-1979.
  • [26]Papadopoulos G, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou A: DIANA-mirPath: Integrating human and mouse microRNAs in pathways. Bioinformatics 2009, 25:1991-1993.
  • [27]Grimson A, Farh K, Johnston W, Garrett-Engele P, Lim L, Bartel D: MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing. Mol Cell 2007, 27:91-105.
  • [28]Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39:1278-1284.
  • [29]Mestdagh P, Lefever S, Pattyn F, Ridzon D, Fredlund E, Fieuw A, Ongenaert M, Vermeulen J, De Paepe A, Wong L, Speleman F, Chen C, Vandesompele J: The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res 2011, 39:e136.
  • [30]Ulitsky I, Laurent L, Shamir R: Towards computational prediction of microRNA function and activity. Nucleic Acids Res 2010, 38:e160.
  • [31]Qiu C, Wang D, Wang E, Cui Q: An upstream interacting context based framework for the computational inference of microRNA functions. Mol Biosys 2012, 8:1492-1498.
  • [32]Liang H, Li W: MicroRNA regulation of human protein protein interaction network. RNA 2007, 13:1402-1408.
  • [33]Cui Q, Yu Z, Pan Y, Purisima E, Wang E: MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 2007, 352:733-738.
  • [34]Cui Q, Yu Z, Purisima E, Wang E: Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2006, 2:46.
  • [35]Hsu S, Lin F, Wu W, Liang C, Huang W, Chan W, Tsai W, Chen G, Lee C, Chiu C, Chien C, Wu M, Huang C, Tsou A, Huang H: miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 2011, 39:D163-D169.
  • [36]Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T: miRecords: an integrated resource for microRNAtarget interactions. Nucleic Acids Res 2009, 37:D105-D110.
  • [37]Wu G, Feng X, Stein L: A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010, 11:R53.
  • [38]Peri S, et al: Human protein reference database as a discovery resource for proteomics. Nucl Acids Res 2004, 32:D497-D501.
  • [39]Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, Zhang S, Liu L, Lu M, O’Connor-McCourt M, Purisima E, Wang E: A map of human cancer signaling. Mol Syst Biol 2007, 3:152.
  • [40]Taylor B, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver B, Arora V, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major J, Wilson M, Socci N, Lash A, Heguy A, Eastham J, Scher H, Reuter V, Scardino P, Sander C, Sawyers C, Gerald W: Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell 2010, 18:11-22.
  • [41]Wach S, Nolte E, Szczyrba J, Støhr R, Hartmann A, rntoft T, Dyrskjt L, Eltze E, Wieland W, Keck B, Ekici A, Grsser F, Wullich B: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 2012, 130:611-621.
  • [42]Blower P, Verducci J, Lin S, Zhou J, Chung J, Dai Z, Liu C, Reinhold W, Lorenzi P, Kaldjian E, Croce C, Weinstein J, Sadee W: MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007, 6:1483-1491.
  • [43]Goldenberg A, Mostafavi S, Quon G, Boutros P, Morris Q: Unsupervised detection of genes of influence in lung cancer using biological networks. Bioinformatics 2011, 27:3166-3172.
  • [44]Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 2008, 9:S1-S4.
  • [45]Fraser A, Marcotte E: A probabilistic view of gene function. Nat Genet 2004, 36:559-564.
  • [46]Pradines J, Rudolph-Owen L, Hunter J, Leroy P, Cary M, Sander C, Reich C: Detecting activity centers in cellular pathways using transcript profiles. J of Biopharmaceutical Stat 2004, 14:701-721.
  • [47]Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009, 37:D98-104.
  • [48]Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An Analysis of Human MicroRNA and Disease Associations. Plos One 2008, 10:e3420.
  • [49]Smoot M, Ono K, Ruscheinski J, Wang P, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
  • [50]Merico D, Isserlin R, Stueker O, Emili A, Bader G: Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 2010, 15:e13984.
  • [51]Sboner A, Demichelis F, Calza S, Pawitan Y, Mucci L, Kantoff P, Stampfer M, Andersson S, Varenhorst E, Johansson J, Gerstein M, Golub T, Rubin M, Andrn O: Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genomics 2010, 3:8.
  • [52]Chuang H, Lee E, Liu Y, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
  • [53]Li J, Lenferink A, Deng Y, Collins C, Cui Q, Purisima E, O’Connor-McCourt M, Wang E: Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 2010, 1:34.
  • [54]Tusher V, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 2001, 98:5116-5121.
  • [55]Schaefer A, Jung M, Mollenkopf H, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010, 126:1166-1176.
  • [56]Hudson R, Yi M, Esposito D, Watkins S, Hurwitz A, Yfantis H, Lee D, Borin J, Naslund M, Alexander R, Dorsey T, Stephens R, Croce C, Ambs S: MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2011, 40:1-15.
  文献评价指标  
  下载次数:123次 浏览次数:18次