期刊论文详细信息
BMC Evolutionary Biology
Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons
Jeffrey D Palmer2  Richard G Olmstead1  Lynn Bohs5  Eric J Tepe3  Shi Zhuo2  Cinthia C Abbona4  Maria V Sanchez-Puerta6 
[1] Department of Biology, University of Washington, Hitchcock Hall 423, Seattle (98195), USA;Department of Biology, Indiana University, 1001 E Third St., Bloomington (47405), USA;Department of Biological Sciences, University of Cincinnati, Cincinnati (45221), USA;IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza (5500), Argentina;Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City (84112), USA;Instituto de Ciencias Básicas, IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza (5500), Argentina
关键词: homing endonuclease;    mitochondrial DNA;    Solanaceae;    cox1 intron;    horizontal gene transfer;   
Others  :  1142871
DOI  :  10.1186/1471-2148-11-277
 received in 2011-04-26, accepted in 2011-09-27,  发布年份 2011
PDF
【 摘 要 】

Background

The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element.

Results

Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT.

Conclusions

We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery of extended co-conversion suggests that other cox1 conversions may be longer than realized but obscured by the exceptional conservation of plant mitochondrial sequences. Our findings provide further support for the rampant-transfer model of cox1 intron evolution and recommend the Solanaceae as a model system for the experimental analysis of cox1 intron transfer in plants.

【 授权许可】

   
2011 Sanchez-Puerta et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328174758527.pdf 634KB PDF download
Figure 6. 69KB Image download
Figure 5. 213KB Image download
Figure 4. 123KB Image download
Figure 3. 111KB Image download
Figure 2. 165KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bergthorsson U, Adams KL, Thomason B, Palmer JD: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003, 424:197-201.
  • [2]Bergthorsson U, Richardson A, Young G, Goertzen L, Palmer JD: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 2004, 101(51):17747-17752.
  • [3]Davis C, Andersen W, Wurdack K: Gene transfer from a parasitic flowering plant to a fern. Proc R Soc Lond B 2005, 272:2237-2242.
  • [4]Mower J, Stefanovic S, Young GJ, Palmer JD: Plant genetics: gene transfer from parasitic to host plants. Nature 2004, 432:165-166.
  • [5]Won H, Renner S: Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 2003, 100:10824-10829.
  • [6]Bock R: The give-and-take of DNA: horizontal gene transfer in plants. Trends in Plant Science 2010, 15:11-22.
  • [7]Adams KL, Clements MJ, Vaughn JC: The Peperomia mitochondrial cox1 group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 1998, 46(6):689-696.
  • [8]Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW: Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 2007, 7(1):248. BioMed Central Full Text
  • [9]Cho Y, Qiu YL, Kuhlman P, Palmer JD: Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 1998, 95(24):14244-14249.
  • [10]Cho YR, Palmer JD: Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol Biol Evol 1999, 16(9):1155-1165.
  • [11]Inda L, Pimentel M, Chase MW: Contribution of mitochondrial cox1 intron sequences to the phylogenetics of tribe Orchideae (Orchidaceae): Do the distribution and sequence of this intron in orchids also tell us something about its evolution? Taxon 2010, 59:1053-1064.
  • [12]Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD: Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 2008, 25(8):1762-1777.
  • [13]Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF: Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res 2005, 33(2):734-744.
  • [14]Vaughn JC, Mason MT, Sperwhitis GL, Kuhlman P, Palmer JD: Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric cox1 gene of Peperomia. J Mol Evol 1995, 41(5):563-572.
  • [15]Cusimano N, Zhang LB, Renner SS: Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 2008, 25:265-276.
  • [16]Delahodde A, Goguel V, Becam M, Creusot F, Perea J, Banroques J, Jacq C: Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 1989, 56:431-441.
  • [17]Lambowitz AM, Belfort M: Introns as mobile genetic elements. Annu Rev Biochem 1993, 62:587-622.
  • [18]Mueller J, Smith D, Belfort M: Exon coconversion biases accompanying intron homing: battle of the nucleases. Genes & Dev 1996, 10:2158-2166.
  • [19]Wenzlau J, Saldanha R, Butow RA, Perlman PS: A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 1989, 56:421-430.
  • [20]Bussiéres J, Lemieux C, Lee RW, Turmel M: Optional elements in the chloroplast DNAs of Chlamydomonas eugametos and C. moewusii: unidirectional gene conversion and co-conversion of adjacent markers in high-viability crosses. Curr Genet 1996, 30:356-365.
  • [21]Daniell H, Kumar S, Dufourmantel N: Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnology 2005, 23:238-245.
  • [22]Rice D, Palmer JD: An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 2006, 4:31. BioMed Central Full Text
  • [23]Babiychuk E, Schantz R, Cherep N, Weil J, Gleba Y, Kushnir S: Alterations in chlorophyll a/b binding proteins in Solanaceae cybrids. Mol Gen Genet 1995, 249:648-654.
  • [24]Gleba Y, Sytnik K: Protoplast fusion: genetic engineering in higher plants. Berlin: Springer-Verlag 1984.
  • [25]Kuchuk N: Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. Theor Appl Genet 2006, 113(3):519-527.
  • [26]Zubko MK: Self-fertile cybrids Nicotiana tabacum (+Hyoscyamus aureus) with a nucleo-plastome incompatibility. Theor Appl Genet 2002, 105:(6-7):822-828.
  • [27]Zubko MK: New CMS-associated phenotypes in cybrids Nicotiana tabacum L. (plus Hyoscyamus niger L.). Ann Bot 2003, 92(2):281-288.
  • [28]Belliard G, Vedel F, Pelletier G: Mitochondrial recombination in cytoplasmic of Nicotiana tabacum by protoplast fusion. Nature 1979, 281:401-403.
  • [29]Pelletier G: Chloroplast and mitochondrial genomes: manipulation through somatic hybridization. In Advanced methods in plant breeding and biotechnology Edited by Murray D. 1991, 201-221.
  • [30]Giddings G, Allison G, Brooks D, Carter A: Transgenic plants as factories for biopharmaceuticals. Nature Biotech 2000, 18:1151-1155.
  • [31]Grevich JJ, Daniell H: Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 2005, 24:83-107.
  • [32]Sparrow PA, Irwin JA, Dale PJ, Twyman RM, Ma JKC: Pharma-Planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res 2007, 16:147-161.
  • [33]Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M: The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Molecular Genetics and Genomics 2005, 272(6):603-615.
  • [34]Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD: Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 2007, 7:135. BioMed Central Full Text
  • [35]Palmer JD, Herbon LA: Plant mitochondrial-DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 1988, 28:(1-2):87-97.
  • [36]Wolfe KH, Li WH, Sharp PM: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 1987, 84(24):9054-9058.
  • [37]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17:1246-1247.
  • [38]Adams KL, Daley DO, Qiu Y-L, Whelan J, Palmer JD: Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 2000, 408:354-357.
  • [39]Hao W, Palmer JD: Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci USA 2009, 106:16728-16733.
  • [40]Hao W, Richardson AO, Zheng Y, Palmer JD: Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci USA 2010. Early edition
  • [41]Mower JP, Stefanovic S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD: Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biology 2010, 8:150. BioMed Central Full Text
  • [42]Tu T, Volis S, Dillon M, Sun H, Wen J: Dispersals of Hyoscyameae and Mandragoreae (Solanaceae) from the New World to Eurasia in the early Miocene and their biogeographic diversification within Eurasia. Mol Phylogenet Evol 2010, 57:1226-1237.
  • [43]Hazkani-Covo E, Zeller R, Martin W: Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PloS Genetics 2010, 6:e1000834.
  • [44]Drouin G, Daoud H, Xia J: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 2008, 49:827-831.
  • [45]Ran J, Gao H, Wang X: Fast evolution of the retroprocessed mitochondrial rps3 gene in conifer II and further eidence for the phylogeny of gymnosperms. Mol Phylogenet Evol 2010, 54:136-149.
  • [46]Sloan D, MacQueen A, Alverson AJ, Palmer JD, Taylor DR: Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 2010, 185:1369-1380.
  • [47]Cho Y, Mower J, Qiu Y-L, Palmer JD: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 2004, 101(51):17741-17746.
  • [48]Olmstead RG, Bohs L, Migid H, Santiago-Valentin E, Garcia V, Collier S: A molecular phylogeny of the Solanaceae. Taxon 2008, 57(4):1159-1181.
  • [49]Davis CC, Wurdack KJ: Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 2004, 305(5684):676-678.
  • [50]Nickrent DL, Blarer A, Qiu YL, Vidal-Russell R, Anderson FE: Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 2004, 4:40. BioMed Central Full Text
  • [51]Zubko MK: Novel 'homeotic' CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Botany 1996, 47(301):1101-1110.
  • [52]Doyle JJ, Doyle JL: A rapid isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 1987, 19:11-15.
  • [53]Maddison W, Maddison P: MacClade version 4: analysis of phylogeny and character evolution. Sunderland, MA: Sinauer Associates; 2000.
  • [54]Mower JP: PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics 2005, 6:96. BioMed Central Full Text
  • [55]Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin: University of Texas; 2006.
  • [56]Posada D, Crandall K: ModelTest: testing the model of DNA substitution. Bioinformatics 1998, 14(9):817-818.
  • [57]Swofford D, Olsen G, Waddell P, Hillis D: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland: Sinauer Associates; 2002.
  文献评价指标  
  下载次数:23次 浏览次数:34次