期刊论文详细信息
BMC Genomics
Global changes in gene expression associated with phenotypic switching of wild yeast
Zdena Palková1  Derek Wilkinson1  Markéta Begany3  Libuše Váchová3  Vratislav Šťovíček2 
[1] Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic;Current Address: The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark;Institute of Microbiology of the ASCR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
关键词: Wild yeast strains;    Phenotypic switching;    Histone deacetylase;    Biofilm colony;   
Others  :  1217860
DOI  :  10.1186/1471-2164-15-136
 received in 2013-08-01, accepted in 2014-02-07,  发布年份 2014
PDF
【 摘 要 】

Background

Saccharomyces cerevisiae strains isolated from natural settings form structured biofilm colonies that are equipped with intricate protective mechanisms. These wild strains are able to reprogram themselves with a certain frequency during cultivation in plentiful laboratory conditions. The resulting domesticated strains switch off certain protective mechanisms and form smooth colonies that resemble those of common laboratory strains.

Results

Here, we show that domestication can be reversed when a domesticated strain is challenged by various adverse conditions; the resulting feral strain restores its ability to form structured biofilm colonies. Phenotypic, microscopic and transcriptomic analyses show that phenotypic transition is a complex process that affects various aspects of feral strain physiology; it leads to a phenotype that resembles the original wild strain in some aspects and the domesticated derivative in others. We specify the genetic determinants that are likely involved in the formation of a structured biofilm colonies. In addition to FLO11, these determinants include genes that affect the cell wall and membrane composition. We also identify changes occurring during phenotypic transitions that affect other properties of phenotypic strain-variants, such as resistance to the impact of environmental stress. Here we document the regulatory role of the histone deacetylase Hda1p in developing such a resistance.

Conclusions

We provide detailed analysis of transcriptomic and phenotypic modulations of three related S. cerevisiae strains that arose by phenotypic switching under diverse environmental conditions. We identify changes specifically related to a strain’s ability to create complex structured colonies; we also show that other changes, such as genome rearrangement(s), are unrelated to this ability. Finally, we identify the importance of histone deacetylase Hda1p in strain resistance to stresses.

【 授权许可】

   
2014 Šťovíček et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708221815901.pdf 2254KB PDF download
Figure 7. 85KB Image download
Figure 6. 68KB Image download
Figure 5. 105KB Image download
Figure 4. 108KB Image download
Figure 3. 81KB Image download
Figure 2. 111KB Image download
Figure 1. 157KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Palková Z: Multicellular microorganisms: laboratory versus nature. EMBO Rep 2004, 5(5):470-476.
  • [2]van der Woude MW: Re-examining the role and random nature of phase variation. FEMS Microbiol Lett 2006, 254(2):190-197.
  • [3]Soll DR: High-frequency switching in Candida albicans. Clin Microbiol Rev 1992, 5(2):183-203.
  • [4]Soll DR: Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop 2002, 81(2):101-110.
  • [5]Jain N, Hasan F, Fries BC: Phenotypic switching in fungi. Curr Fungal Infect Rep 2008, 2(3):180-188.
  • [6]Fries BC, Taborda CP, Serfass E, Casadevall A: Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J Clin Invest 2001, 108(11):1639-1648.
  • [7]Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR: Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 1999, 67(12):6652-6662.
  • [8]Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A: Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA 1998, 95(25):14967-14972.
  • [9]Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR: “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 1987, 169(1):189-197.
  • [10]Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J: Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog 2008, 4(6):e1000089.
  • [11]Granek JA, Magwene PM: Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 2010, 6(1):e1000823.
  • [12]Granek JA, Murray D, Kayrkci O, Magwene PM: The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae. Genetics 2013, 193(2):587-600.
  • [13]Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z: Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 2003, 47(3):745-754.
  • [14]Šťovíček V, Váchová L, Kuthan M, Palková Z: General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 2010, 47(12):1012-1022.
  • [15]Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ: Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol 2012, 86(1):225-239.
  • [16]Váchová L, Šťovíček V, Hlaváček O, Chernyavskiy O, Štěpánek L, Kubínová L, Palková Z: Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol 2011, 194(5):679-687.
  • [17]Vopálenská I, Šťovíček V, Janderová B, Váchová L, Palková Z: Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol 2010, 12(1):264-277.
  • [18]Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR: The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 2001, 183(15):4614-4625.
  • [19]Perez-Martin J, Uria JA, Johnson AD: Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 1999, 18(9):2580-2592.
  • [20]Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA: Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001, 98(26):15113-15118.
  • [21]Aparicio OM, Billington BL, Gottschling DE: Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 1991, 66(6):1279-1287.
  • [22]Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002, 109(4):437-446.
  • [23]Alby K, Bennett RJ: Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell 2009, 20(14):3178-3191.
  • [24]Verstrepen KJ, Reynolds TB, Fink GR: Origins of variation in the fungal cell surface. Nat Rev Microbiol 2004, 2(7):533-540.
  • [25]Fidalgo M, Barrales RR, Jimenez J: Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 2008, 25(12):879-889.
  • [26]Rinckel LA, Garfinkel DJ: Influences of histone stoichiometry on the target site preference of retrotransposons Ty1 and Ty2 in Saccharomyces cerevisiae. Genetics 1996, 142(3):761-776.
  • [27]Roncero C, Duran A: Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 1985, 163(3):1180-1185.
  • [28]Ram AF, Wolters A, Ten Hoopen R, Klis FM: A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 1994, 10(8):1019-1030.
  • [29]Klar AJ, Srikantha T, Soll DR: A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 2001, 158(2):919-924.
  • [30]Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R: Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010, 468(7321):321-325.
  • [31]Pfau SJ, Amon A: Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 2012, 13(6):515-527.
  • [32]Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC, Ahyong V, Sirr A, Skupin A, Dudley AM: Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci USA 2013, 110(30):12367-12372.
  • [33]Slutsky B, Buffo J, Soll DR: High-frequency switching of colony morphology in Candida albicans. Science 1985, 230(4726):666-669.
  • [34]Slavikova E, Vadkertiova R: Yeasts and yeast-like organisms isolated from fish-pond waters. Acta Microbiol Pol 1995, 44(2):181-189.
  • [35]Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 2002, 350:87-96.
  • [36]Cap M, Stepanek L, Harant K, Vachova L, Palkova Z: Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell 2012, 46(4):436-448.
  • [37]Rabilloud T, Vuillard L, Gilly C, Lawrence JJ: Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol (Noisy-le-grand) 1994, 40(1):57-75.
  • [38]Hawkes R: Identification of concanavalin a-binding proteins after sodium dodecyl sulfate–gel electrophoresis and protein blotting. Anal Biochem 1982, 123(1):143-146.
  • [39]Váchová L, Chernyavskiy O, Strachotová D, Bianchini P, Burdíková Z, Ferčíková I, Kubínová L, Palková Z: Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 2009, 11:1866-1877.
  • [40]Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 2007, 35(Web Server issue):W43-W46.
  • [41]Harju S, Fedosyuk H, Peterson KR: Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol 2004, 4:8. BioMed Central Full Text
  • [42]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [43]De Preter K, Barriot R, Speleman F, Vandesompele J, Moreau Y: Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res 2008, 36(7):e43.
  文献评价指标  
  下载次数:65次 浏览次数:13次