期刊论文详细信息
BMC Pulmonary Medicine
Safety and performance analysis of acriflavine and methylene blue for in vivo imaging of precancerous lesions using fibered confocal fluorescence microscopy (FCFM): an experimental study
Luc Thiberville1  François-Xavier Boland4  Pierre Bohn5  Richard Sesboüé2  Liana Veresezan3  Mathieu Salaun1  Bérengère Obstoy5 
[1] Clinique Pneumologique and CIC INSERM U1404, IRIB, Rouen University Hospital, Rouen F-76031, France;INSERM U-1079, IRIB, Rouen University, Rouen F-76000, France;Department of Pathology, H. Becquerel Cancer Center, Rouen, France;Laboratory of Experimental Surgery, EA 3830 GRHV, IRIB, Rouen University, Rouen F-76000, France;Quant.I.F Litis EA 4108, IRIB, Rouen University, Rouen F-76000, France
关键词: Precancerous lesions;    Methylene blue;    Heller model;    Genotoxicity;    Fibered confocal fluorescence microscopy;    Diagnosis;   
Others  :  1170570
DOI  :  10.1186/s12890-015-0020-4
 received in 2014-11-01, accepted in 2015-03-10,  发布年份 2015
PDF
【 摘 要 】

Background

Fibered confocal fluorescence microscopy (FCFM) allows in vivo investigation of pulmonary microstructures. However, the bronchial epithelium can only be imaged using exogenous fluorophores. The objective of this study is to compare methylene blue (MB) and acriflavine genotoxicity and to assess FCFM performance for in vivo imaging of precancerous lesions.

Methods

Genotoxicity was assessed using the comet assay on both cultured human lymphocytes and NCI-H460 cells, which had been exposed to MB or acriflavine before being illuminated at 660 or 488 nm, respectively. FCFM was performed on precancerous lesions in the hamster cheek pouch model, following topical application of the fluorophores. FCFM data were analyzed according to histology.

Results

No genotoxicity was found using 0.01% (w/v) MB after illumination at 660 nm for 2 and 15 min (5 mW). Acriflavine exposure (0.025%) led to DNA damages, increasing from 2 to 15 min of light exposure at 448 nm in both lymphocytes (83.4 to 88%, p = 0.021) and NCI H460 cell populations (79.9 to 84.6%, p = 0.045). In total, 11 invasive carcinoma, 24 reserve cell hyperplasia, and 17 dysplasia lesions were imaged using FCFM in vivo. With both fluorophores, the cellular density increased from hyperplasia to high-grade dysplasia (p < 0.05). With MB, the cellular diameter significantly decreased (48.9 to 13.9 μm) from hyperplasia to carcinoma (p < 0.05). In this model, a cut-off diameter of 30 μm enabled the diagnosis of high-grade lesions with a sensitivity of 94.7% and a specificity of 97%.

Conclusion

Methylene blue can be used safely to image precancerous lesions in vivo. This study does not support the use of acriflavine in humans.

【 授权许可】

   
2015 Obstoy et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150417021739293.pdf 2760KB PDF download
Figure 7. 32KB Image download
Figure 6. 25KB Image download
Figure 5. 72KB Image download
Figure 9. 71KB Image download
Figure 3. 10KB Image download
Figure 2. 49KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 9.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fuchs FS, Zirlik S, Hildner K, Schubert J, Vieth M, Neurath MF: Confocal laser endomicroscopy for diagnosing lung cancer in vivo. Eur Respir J 2013, 41:1401-8.
  • [2]Thiberville L, Salaun M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, et al.: Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J 2009, 33:974-85.
  • [3]Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cave C, Bourg HG: In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med 2007, 175:22-31.
  • [4]Thiberville L, Salaün M, Moreno-Swirc S, Bourg Heckly G: In vivo endoscopic microimaging of the bronchial epithelial layer using 660 nm fibered confocal fluorescence microscopy and topical methylene blue (abstract). Eur Respir J 2007, 29:712S.
  • [5]Thiberville L, Salaün M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, et al.: In vivo confocal fluorescence endomicroscopy of lung cancer. J Thorac Oncol 2009, 4:S48-51.
  • [6]Musani AI, Sims M, Sareli C, Russell W, McLaren WJ, Delaney PM, et al.: A pilot study of the feasibility of confocal endomicroscopy for examination of the human airway. J Bronchology Interv Pulmonol 2010, 17:126-30.
  • [7]Thiberville L, Salaun M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, et al.: Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc 2009, 6:444-9.
  • [8]Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y: The new world health organization classification of lung tumours. Eur Respir J 2001, 18:1059-68.
  • [9]Bota S, Auliac JB, Paris C, Metayer J, Sesboue R, Nouvet G, et al.: Follow-up of bronchial precancerous lesions and carcinoma in situ using fluorescence endoscopy. Am J Respir Crit Care Med 2001, 164:1688-93.
  • [10]Thiberville L, Salaun M, Corne F, Bota S: [diagnosis of lung cancer. Fluorescence bronchoscopy]. Rev Mal Respir 2006, 23:16S17-22.
  • [11]Heller B, Kluftinger AM, Davis NL, Quenville NF: A modified method of carcinogenesis induction in the dmba hamster cheek pouch model of squamous neoplasia. Am J Surg 1996, 172:678-80.
  • [12]Wani MK, Yarber RH, Ahmed A, Hengesteg A, Robbins KT: Cancer induction in the dmba hamster cheek pouch: A modified technique using a promoter. Laryngoscope 2001, 111:204-6.
  • [13]McKelvey-Martin VJ, Ho ET, McKeown SR, Johnston SR, McCarthy PJ, Rajab NF, et al.: Emerging applications of the single cell gel electrophoresis (comet) assay. I. Management of invasive transitional cell human bladder carcinoma. Ii. Fluorescent in situ hybridization comets for the identification of damaged and repaired DNA sequences in individual cells. Mutagenesis 1998, 13:1-8.
  • [14]Olive PL, Wlodek D, Banath JP: DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 1991, 51:4671-6.
  • [15]Prasad R, Singh R, Mishra OP, Pandey M: Dapsone induced methemoglobinemia : Intermittent vs continuous intravenous methylene blue therapy. Indian J Pediatr 2008, 75:245-7.
  • [16]Aoyama T, Yoshikawa T, Morita S, Shirai J, Fujikawa H, Iwasaki K, et al.: Methylene blue-assisted technique for harvesting lymph nodes after radical surgery for gastric cancer: A prospective randomized phase iii study. BMC Cancer 2014, 14:155. BioMed Central Full Text
  • [17]Kiesslich R, Burg J, Vieth M, Gnaendiger J, Enders M, Delaney P, et al.: Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 2004, 127:706-13.
  • [18]Davies J, Burke D, Olliver JR, Hardie LJ, Wild CP, Routledge MN: Methylene blue but not indigo carmine causes DNA damage to colonocytes in vitro and in vivo at concentrations used in clinical chromoendoscopy. Gut 2007, 56:155-6.
  • [19]Hardie LJ, Olliver JR, Wild CP, Dexter S, Sahay P: Chromoendoscopy with methylene blue and the risk of DNA damage. Gastroenterology 2004, 126:623. author reply 623–624
  • [20]Sturmey RG, Wild CP, Hardie LJ: Removal of red light minimizes methylene blue-stimulated DNA damage in oesophageal cells: Implications for chromoendoscopy. Mutagenesis 2009, 24:253-8.
  • [21]Ghoshal NG, Bal HS: Histomorphology of the hamster cheek pouch. Lab Anim 1990, 24:228-33.
  • [22]Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, et al.: Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 2005, 65:1180-6.
  文献评价指标  
  下载次数:47次 浏览次数:10次