期刊论文详细信息
BMC Nephrology
Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate
Florian Lang1  Jakob Voelkl1  Majed Abed1  Mohamed Siyabeldin E Ahmed1 
[1] Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
关键词: Eryptosis;    Cell volume;    Calcium;    Indoxyl sulfate;    Phosphatidylserine;   
Others  :  1082795
DOI  :  10.1186/1471-2369-14-244
 received in 2013-05-22, accepted in 2013-09-25,  发布年份 2013
PDF
【 摘 要 】

Background

Anemia in end stage renal disease is attributed to impaired erythrocyte formation due to erythropoietin and iron deficiency. On the other hand, end stage renal disease enhances eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i) and by ceramide, which sensitizes erythrocytes to [Ca2+]i. Mechanisms triggering eryptosis in endstage renal disease remained enigmatic. The present study explored the effect of indoxyl sulfate, an uremic toxin accumulated in blood of patients with chronic kidney disease.

Methods

Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, ceramide abundance by specific antibodies, hemolysis from hemoglobin release, and [Ca2+]i from Fluo3-fluorescence.

Results

A 48 hours exposure to indoxyl sulfate significantly increased [Ca2+]i (≥ 300 μM), significantly decreased forward scatter (≥ 300 μM) and significantly increased annexin-V-binding (≥ 50 μM). Indoxyl sulfate (150 μM) induced annexin-V-binding was virtually abolished in the nominal absence of extracellular Ca2+. Indoxyl sulfate (150 μM) further enhanced ceramide abundance.

Conclusion

Indoxyl sulfate stimulates suicidal erythrocyte death or eryptosis, an effect in large part due to stimulation of extracellular Ca2+entry with subsequent stimulation of cell shrinkage and cell membrane scrambling.

【 授权许可】

   
2013 Ahmed et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224182531337.pdf 394KB PDF download
Figure 5. 19KB Image download
Figure 4. 18KB Image download
Figure 3. 19KB Image download
Figure 2. 20KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yang M, Fox CH, Vassalotti J, Choi M: Complications of progression of CKD. Adv Chronic Kidney Dis 2011, 18(6):400-405.
  • [2]Dmitrieva O, de Lusignan S, Macdougall IC, Gallagher H, Tomson C, Harris K, Desombre T, Goldsmith D: Association of anaemia in primary care patients with chronic kidney disease: cross sectional study of quality improvement in chronic kidney disease (QICKD) trial data. BMC nephrology 2013, 14:24. BioMed Central Full Text
  • [3]Atkinson MA, Furth SL: Anemia in children with chronic kidney disease. Nat Rev Nephrol 2011, 7(11):635-641.
  • [4]Parfrey PS: Critical appraisal of randomized controlled trials of anemia correction in patients with renal failure. Curr Opin Nephrol Hypertens 2011, 20(2):177-181.
  • [5]Kwack C, Balakrishnan VS: Managing erythropoietin hyporesponsiveness. Semin Dial 2006, 19(2):146-151.
  • [6]Kovesdy CP: Iron and clinical outcomes in dialysis and non-dialysis-dependent chronic kidney disease patients. Adv Chronic Kidney Dis 2009, 16(2):109-116.
  • [7]Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ: Red blood cell survival in long-term dialysis patients. Am J Kidney Dis 2011, 58(4):591-598.
  • [8]Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, Bernhardt I: Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem 2011, 28(5):847-856.
  • [9]Lang E, Qadri SM, Lang F: Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012, 44(8):1236-1243.
  • [10]Myssina S, Huber SM, Birka C, Lang PA, Lang KS, Friedrich B, Risler T, Wieder T, Lang F: Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol 2003, 14(11):2750-2757.
  • [11]Lau IP, Chen H, Wang J, Ong HC, Leung KC, Ho HP, Kong SK: In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology 2012, 6:847-56. doi:10.3109/17435390.2011.625132. Epub 2011 Oct 24
  • [12]Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L: Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 2013, 50(4):489-95. doi:10.1007/s00592-011-0274-0. Epub 2011 Mar 25
  • [13]Bhavsar SK, Gu S, Bobbala D, Lang F: Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem 2011, 27(5):547-556.
  • [14]Zelenak C, Eberhard M, Jilani K, Qadri SM, Macek B, Lang F: Protein kinase CK1alpha regulates erythrocyte survival. Cell Physiol Biochem 2012, 29(1–2):171-180.
  • [15]Kucherenko YV, Huber SM, Nielsen S, Lang F: Decreased redox-sensitive erythrocyte cation channel activity in aquaporin 9-deficient mice. J Membr Biol 2012, 245(12):797-805. doi:10.1007/s00232-012-9482-y. Epub 2012 Jul 27
  • [16]Gatidis S, Zelenak C, Fajol A, Lang E, Jilani K, Michael D, Qadri SM, Lang F: p38 MAPK activation and function following osmotic shock of erythrocytes. Cell Physiol Biochem 2011, 28(6):1279-1286.
  • [17]Lupescu A, Shaik N, Jilani K, Zelenak C, Lang E, Pasham V, Zbidah M, Plate A, Bitzer M, Foller M, et al.: Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study. Cell Physiol Biochem 2012, 30(4):876-888.
  • [18]Shaik N, Lupescu A, Lang F: Sunitinib-sensitive suicidal erythrocyte death. Cell Physiol Biochem 2012, 30(3):512-522.
  • [19]Shaik N, Zbidah M, Lang F: Inhibition of Ca(2+) entry and suicidal erythrocyte death by naringin. Cell Physiol Biochem 2012, 30(3):678-686.
  • [20]Zelenak C, Pasham V, Jilani K, Tripodi PM, Rosaclerio L, Pathare G, Lupescu A, Faggio C, Qadri SM, Lang F: Tanshinone IIA stimulates erythrocyte phosphatidylserine exposure. Cell Physiol Biochem 2012, 30(1):282-294.
  • [21]Qadri SM, Kucherenko Y, Zelenak C, Jilani K, Lang E, Lang F: Dicoumarol activates Ca2 + -permeable cation channels triggering erythrocyte cell membrane scrambling. Cell Physiol Biochem 2011, 28(5):857-864.
  • [22]Qadri SM, Bauer J, Zelenak C, Mahmud H, Kucherenko Y, Lee SH, Ferlinz K, Lang F: Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death. Cell Physiol Biochem 2011, 28(2):339-346.
  • [23]Lang E, Jilani K, Zelenak C, Pasham V, Bobbala D, Qadri SM, Lang F: Stimulation of suicidal erythrocyte death by benzethonium. Cell Physiol Biochem 2011, 28(2):347-354.
  • [24]Ghashghaeinia M, Toulany M, Saki M, Bobbala D, Fehrenbacher B, Rupec R, Rodemann HP, Ghoreschi K, Rocken M, Schaller M, et al.: The NFkB pathway inhibitors Bay 11–7082 and parthenolide induce programmed cell death in anucleated erythrocytes. Cell Physiol Biochem 2011, 27(1):45-54.
  • [25]Felder KM, Hoelzle K, Ritzmann M, Kilchling T, Schiele D, Heinritzi K, Groebel K, Hoelzle LE: Hemotrophic mycoplasmas induce programmed cell death in red blood cells. Cell Physiol Biochem 2011, 27(5):557-564.
  • [26]Jilani K, Lupescu A, Zbidah M, Abed M, Shaik N, Lang F: Enhanced apoptotic death of erythrocytes induced by the mycotoxin ochratoxin a. Kidney Blood Press Res 2012, 36(1):107-118.
  • [27]Polak-Jonkisz D, Purzyc L: Ca influx versus efflux during eryptosis in uremic erythrocytes. Blood Purif 2012, 34(3–4):209-210.
  • [28]Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F: Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 2012, 303(9):C991-999.
  • [29]Vota DM, Maltaneri RE, Wenker SD, Nesse AB, Vittori D: Differential erythropoietin action upon cells induced to eryptosis by different agents. Cell Biochem Biophys 2013, 65(2):145-57. doi:10.1007/s12013-012-9408-4
  • [30]Firat U, Kaya S, Cim A, Buyukbayram H, Gokalp O, Dal MS, Tamer MN: Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Exp Diabetes Res 2012, 2012:316384.
  • [31]Bottger E, Multhoff G, Kun JF, Esen M: Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS One 2012, 7(3):e33774.
  • [32]Ghashghaeinia M, Cluitmans JC, Akel A, Dreischer P, Toulany M, Koberle M, Skabytska Y, Saki M, Biedermann T, Duszenko M, et al.: The impact of erythrocyte age on eryptosis. Br J Haematol 2012, 157(5):606-614.
  • [33]Gao M, Cheung KL, Lau IP, Yu WS, Fung KP, Yu B, Loo JF, Kong SK: Polyphyllin D induces apoptosis in human erythrocytes through Ca(2)(+) rise and membrane permeabilization. Arch Toxicol 2012, 86(5):741-752.
  • [34]Ganesan S, Chaurasiya ND, Sahu R, Walker LA, Tekwani BL: Understanding the mechanisms for metabolism-linked hemolytic toxicity of primaquine against glucose 6-phosphate dehydrogenase deficient human erythrocytes: evaluation of eryptotic pathway. Toxicology 2012, 294(1):54-60.
  • [35]Weiss E, Cytlak UM, Rees DC, Osei A, Gibson JS: Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium 2012, 51(1):51-56.
  • [36]Lupescu A, Jilani K, Zelenak C, Zbidah M, Shaik N, Lang F: Induction of programmed erythrocyte death by gambogic acid. Cell Physiol Biochem 2012, 30(2):428-438.
  • [37]Kucherenko YV, Lang F: Inhibitory effect of furosemide on Non-selective voltage-independent cation channels in human erythrocytes. Cell Physiol Biochem 2012, 30(4):863-875.
  • [38]Ahmed M, Langer H, Abed M, Voelkl J, Lang F: The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res 2013, 37:158-167.
  • [39]Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012, 23(7):1258-1270.
  • [40]Bolati D, Shimizu H, Yisireyili M, Nishijima F, Niwa T: Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-kappaB. BMC nephrology 2013, 14:56. BioMed Central Full Text
  • [41]Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M: Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Invest 2011, 91(11):1564-1571.
  • [42]Niwa T, Shimizu H: Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr 2012, 22(1):102-106.
  • [43]Schmid U, Stopper H, Heidland A, Schupp N: Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev 2008, 24(5):371-377.
  • [44]Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, Berland Y, Brunet P: The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int 2004, 65(2):442-451.
  • [45]Liu S, Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H: Cardiorenal syndrome: pathophysiology, preclinical models, management and potential role of uraemic toxins. Clin Exp Pharmacol Physiol 2012, 39(8):692-700.
  • [46]Meyer TW, Hostetter TH: Uremic solutes from colon microbes. Kidney Int 2012, 81(10):949-954.
  • [47]Kim SH, Yu MA, Ryu ES, Jang YH, Kang DH: Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab Invest 2012, 92(4):488-498.
  • [48]Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA: Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 2009, 4(10):1551-1558.
  • [49]Bookchin RM, Ortiz OE, Lew VL: Activation of calcium-dependent potassium channels in deoxygenated sickled red cells. Prog Clin Biol Res 1987, 240:193-200.
  • [50]Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, F"ller M: Eryptosis, a window to systemic disease. Cell Physiol Biochem 2008, 22(5–6):373-380.
  • [51]Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F: Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J 2006, 20(2):368-370.
  • [52]Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Foller M, Gawaz M, Lang F: Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol 2012, 302(4):C644-C651.
  • [53]Chung SM, Bae ON, Lim KM, Noh JY, Lee MY, Jung YS, Chung JH: Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 2007, 27(2):414-421.
  • [54]Zwaal RF, Comfurius P, Bevers EM: Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 2005, 62(9):971-988.
  • [55]Singh AK: What is causing the mortality in treating the anemia of chronic kidney disease: erythropoietin dose or hemoglobin level? Curr Opin Nephrol Hypertens 2010, 19(5):420-424.
  • [56]Elliott J, Mishler D, Agarwal R: Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis 2009, 16(2):94-100.
  • [57]Kalantar-Zadeh K, Streja E, Miller JE, Nissenson AR: Intravenous iron versus erythropoiesis-stimulating agents: friends or foes in treating chronic kidney disease anemia? Adv Chronic Kidney Dis 2009, 16(2):143-151.
  文献评价指标  
  下载次数:3次 浏览次数:12次