期刊论文详细信息
BMC Systems Biology
Information theoretic approach to complex biological network reconstruction: application to cytokine release in RAW 264.7 macrophages
Shankar Subramaniam3  Daniel M Tartakovsky2  Mano Ram Maurya1  Farzaneh Farhangmehr2 
[1] San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, 92093-0505 La Jolla, CA, USA;Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, 92093-0411 La Jolla, CA, USA;Departments of Chemistry & Biochemistry, Cellular and Molecular Medicine and Graduate Program in Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
关键词: Statistical methods;    Probabilistic algorithm;    Mutual information;    Information theory;    Data-driven network reconstruction;    Network inference;    Data mining;    Bioinformatics;   
Others  :  864913
DOI  :  10.1186/1752-0509-8-77
 received in 2013-12-11, accepted in 2014-06-04,  发布年份 2014
PDF
【 摘 要 】

Background

High-throughput methods for biological measurements generate vast amounts of quantitative data, which necessitate the development of advanced approaches to data analysis to help understand the underlying mechanisms and networks. Reconstruction of biological networks from measured data of different components is a significant challenge in systems biology.

Results

We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7 macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies between interacting components. Using the topology of the network derived, we develop a data-driven parsimonious input–output model of the phosphoprotein-cytokine network.

Conclusions

We demonstrate the applicability of our information theoretic approach to reconstruction of biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the known signaling components involved in cytokine release but also predicts new signaling components involved in the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage activation during the inflammation process.

【 授权许可】

   
2014 Farhangmehr et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726020532543.pdf 3527KB PDF download
135KB Image download
94KB Image download
156KB Image download
93KB Image download
128KB Image download
76KB Image download
20150113171042973.pdf 1468KB PDF download
72KB Image download
【 图 表 】

【 参考文献 】
  • [1]Spirin V, Mirny LA: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 2003, 100:12123-12128.
  • [2]Li W, Liu Y, Huang HC, Peng Y, Lin Y, Ng WK, Ong KL: Dynamical systems for discovering protein complexes and functional modules from biological networks. IEEE/ACM Trans Comput Biol Bioinform 2007, 4:233-250.
  • [3]Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J: Reverse engineering of gene regulatory networks. IET Syst Biol 2007, 1:149-163.
  • [4]Albert R: Network inference, analysis, and modeling in systems biology. Plant Cell 2007, 19:3327-3338.
  • [5]Hyduke DR, Palsson BO: Towards genome-scale signalling network reconstructions. Nat Rev Genet 2010, 11:297-307.
  • [6]Jolliffe IT: Principal Component Analysis. New York: Springer-Verlag; 1986.
  • [7]Kramer R: Chemometric Techniques for Quantitative Analysis. New York: Marcel Dekker; 1998.
  • [8]El Ghaoui L, Niculescu S-I: Advances in Linear Matrix Inequality Methods in Control. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1999.
  • [9]Neapolitan RE: Learning Bayesian Networks. Upper Saddle River, NJ: Prentice Hall; 2004.
  • [10]Reiss PT, Ogden RT: Functional principal component regression and functional partial least squares. J Am Stat Assoc 2007, 102:984-996.
  • [11]Toscas PJ, Shaw FD, Beilken SL: Partial least squares (PLS) regression for the analysis of instrument measurements and sensory meat quality data. Meat Sci 1999, 52:173-178.
  • [12]Wentzell PD, Montoto LV: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom Intell Lab Syst 2003, 65:257-279.
  • [13]Esposito Vinzi V: SpringerLink (Online Service): Handbook of Partial Least Squares Concepts, Methods and Applications. Berlin: Springer; 2010.
  • [14]Cosentino C, Curatola W, Montefusco F, Bansal M, di Bernardo D, Amato F: Linear matrix inequalities approach to reconstruction of biological networks. IET Syst Biol 2007, 1:164-173.
  • [15]Geiger D, Verma T, Pearl J: Identifying Independence in Bayesian Networks. Networks 1990, 20:507-534.
  • [16]Heckerman D, Geiger D, Chickering DM: Learning Bayesian networks - the combination of knowledge and statistical-data. Mach Learn 1995, 20:197-243.
  • [17]Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, D’Alche-Buc F: Gene networks inference using dynamic Bayesian networks. Bioinformatics 2003, 19 Suppl 2:ii138-ii148.
  • [18]Cover TM, Thomas JA: Elements of Information Theory. 2nd edition. Hoboken, N.J.: Wiley-Interscience; 2006.
  • [19]Kraskov A, Stogbauer H, Grassberger P: Estimating mutual information. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 69:066138.
  • [20]Hnizdo V, Darian E, Fedorowicz A, Demchuk E, Li S, Singh H: Nearest-neighbor nonparametric method for estimating the configurational entropy of complex molecules. J Comput Chem 2007, 28:655-668.
  • [21]Steinfath M, Groth D, Lisec J, Selbig J: Metabolite profile analysis: from raw data to regression and classification. Physiol Plant 2008, 132:150-161.
  • [22]Numata J, Ebenhoh O, Knapp EW: Measuring correlations in metabolomic networks with mutual information. Genome Informatics Int Conf Genome Informatics 2008, 20:112-122.
  • [23]Hartley RH: Transmission of information. Bell Syst Tech J 1928, 7:535-563.
  • [24]Shannon CE: A mathematical theory of communication. Bell Syst Tech J 1948, 27:379-423.
  • [25]Kojadinovic I: On the use of mutual information in data analysis: an overview. In 11th International Symposium Applied Stochastic Models Data Analysis. France: Brest; 2005:738-747.
  • [26]Butte AJ, Kohane IS: Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Pac Symp Biocomput 2000, 5:418-429. URL: http://psb.stanford.edu/psb-online/proceedings/psb00/butte.pdf webcite [access date: June 14, 2014]
  • [27]Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 2000, 97:12182-12186.
  • [28]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5:e8.
  • [29]Peng H, Long F, Ding C: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005, 27:1226-1238.
  • [30]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7 Suppl 1:S7.
  • [31]Silverman BW: Density Estimation for Statistics and Data Analysis. London, New York: Chapman and Hall; 1986.
  • [32]Raykar VC, Duraiswami R: Fast optimal bandwidth selection for kernel density estimation. In sixth SIAM International Conference on Data Mining. Edited by Ghosh J, Lambert D, Skillicorn D, Srivastava J. Bethesda: Society for Industrial and Applied Mathematics, Philadelphia, PA, USA; 2006:524-528.
  • [33]Mugdadi AR, Ahmad IA: A bandwidth selection for kernel density estimation of functions of random variables. Comput Stat Data Anal 2004, 47:49-62.
  • [34]Pradervand S, Maurya MR, Subramaniam S: Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biol 2006, 7:R11.
  • [35]Gilman AG, Simon MI, Bourne HR, Harris BA, Long R, Ross EM, Stull JT, Taussig R, Bourne HR, Arkin AP, Cobb MH, Cyster JG, Devreotes PN, Ferrell JE, Fruman D, Gold M, Weiss A, Stull JT, Berridge MJ, Cantley LC, Catterall WA, Coughlin SR, Olson EN, Smith TF, Brugge JS, Botstein D, Dixon JE, Hunter T, Lefkowitz RJ, Pawson AJ, et al.: Overview of the alliance for cellular signaling. Nature 2002, 420:703-706.
  • [36]The Alliance for Cellular Signalling (AfCS) [http://signaling-gateway.org webcite]
  • [37]Moon YI, Rajagopalan B, Lall U: Estimation of mutual information using kernel density estimators. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1995, 52:2318-2321.
  • [38]Turlach BA: Bandwidth selection in kernel density estimation: A review. In Technical Report. Place de l'Université 1, 1348, Belgium: Univ. Catholique de Louvain; 1993.
  • [39]Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008, 8:958-969.
  • [40]Saito S: Cytokine cross-talk between mother and the embryo/placenta. J Reprod Immunol 2001, 52:15-33.
  • [41]Feghali CA, Wright TM: Cytokines in acute and chronic inflammation. Front Biosci 1997, 2:d12-d26.
  • [42]Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology 2010, 25:218-229.
  • [43]MATLAB and Statistics Toolbox Release 2012b [http://www.mathworks.com/help/stats/ksdensity.html webcite]
  • [44]Wu Y, Johnson GL, Gomez SM: Data-driven modeling of cellular stimulation, signaling and output response in RAW 264.7 cells. J Mol Signal 2008, 3:11.
  • [45]Reeves MB, Compton T: Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol 2011, 85:12750-12758.
  • [46]Cho YH, Lee CH, Kim SG: Potentiation of lipopolysaccharide-inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol Pharmacol 2003, 63:512-523.
  • [47]Yin T, Yang YC: Mitogen-activated protein kinases and ribosomal S6 protein kinases are involved in signaling pathways shared by interleukin-11, interleukin-6, leukemia inhibitory factor, and oncostatin M in mouse 3 T3-L1 cells. J Biol Chem 1994, 269:3731-3738.
  • [48]Ahmed ST, Mayer A, Ji JD, Ivashkiv LB: Inhibition of IL-6 signaling by a p38-dependent pathway occurs in the absence of new protein synthesis. J Leukoc Biol 2002, 72:154-162.
  • [49]Kothari SS, Abrahamsen MS, Cole T, Hammond WP: Expression of granulocyte colony stimulating factor (G-CSF) and granulocyte/macrophage colony stimulating factor (GM-CSF) mRNA upon stimulation with phorbol ester. Blood Cells Mol Dis 1995, 21:192-200.
  • [50]Sanders JL, Stern PH: Protein kinase C involvement in interleukin-6 production by parathyroid hormone and tumor necrosis factor-alpha in UMR-106 osteoblastic cells. J Bone Miner Res 2000, 15:885-893.
  • [51]Suzuki K, Hino M, Hato F, Tatsumi N, Kitagawa S: Cytokine-specific activation of distinct mitogen-activated protein kinase subtype cascades in human neutrophils stimulated by granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-alpha. Blood 1999, 93:341-349.
  • [52]Faggioli L, Costanzo C, Donadelli M, Palmieri M: Activation of the interleukin-6 promoter by a dominant negative mutant of c-Jun. Bba Mol Cell Res 2004, 1692:17-24.
  • [53]Joseph DE, Paul CC, Baumann MA, Gomez-Cambronero J: S6 kinase p90rsk in granulocyte-macrophage colony-stimulating factor-stimulated proliferative and mature hematopoietic cells. J Biol Chem 1996, 271:13088-13093.
  • [54]Dendorfer U, Oettgen P, Libermann TA: Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 1994, 14:4443-4454.
  • [55]Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, Donner DB: A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A 2001, 98:4640-4645.
  • [56]Dobreva ZG, Miteva LD, Stanilova SA: The inhibition of JNK and p38 MAPKs downregulates IL-10 and differentially affects c-Jun gene expression in human monocytes. Immunopharmacol Immunotoxicol 2009, 31:195-201.
  • [57]Dean JLE, Sarsfield SJ, Tsounakou E, Saklatvala J: p38 mitogen-activated protein kinase stabilizes mRNAs that contain cyclooxygenase-2 and tumor necrosis factor AU-rich elements by inhibiting deadenylation. J Biol Chem 2003, 278:39470-39476.
  • [58]Kuprash DV, Udalova IA, Turetskaya RL, Kwiatkowski D, Rice NR, Nedospasov SA: Similarities and differences between human and murine TNF promoters in their response to lipopolysaccharide. J Immunol 1999, 162:4045-4052.
  • [59]Eto M, Kouroedov A, Cosentino F, Luscher TF: Glycogen synthase kinase-3 mediates endothelial cell activation by tumor necrosis factor-alpha. Circulation 2005, 112:1316-1322.
  • [60]Johannes FJ, Horn J, Link G, Haas E, Siemienski K, Wajant H, Pfizenmaier K: Protein kinase Cmu downregulation of tumor-necrosis-factor-induced apoptosis correlates with enhanced expression of nuclear-factor-kappaB-dependent protective genes. Eur J Biochem 1998, 257:47-54.
  • [61]Qian C, Jiang X, An H, Yu Y, Guo Z, Liu S, Xu H, Cao X: TLR agonists promote ERK-mediated preferential IL-10 production of regulatory dendritic cells (diffDCs), leading to NK-cell activation. Blood 2006, 108:2307-2315.
  • [62]Ollivier V, Parry GC, Cobb RR, de Prost D, Mackman N: Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. J Biol Chem 1996, 271:20828-20835.
  • [63]Diaz B, Lopez-Berestein G: A distinct element involved in lipopolysaccharide activation of the tumor necrosis factor-alpha promoter in monocytes. J Interferon Cytokine Res 2000, 20:741-748.
  • [64]Wen AY, Sakamoto KM, Miller LS: The role of the transcription factor CREB in immune function. J Immunol 2010, 185:6413-6419.
  • [65]Tremblay P, Houde M, Arbour N, Rochefort D, Masure S, Mandeville R, Opdenakker G, Oth D: Differential effects of PKC inhibitors on gelatinase B and interleukin 6 production in the mouse macrophage. Cytokine 1995, 7:130-136.
  • [66]Means TK, Pavlovich RP, Roca D, Vermeulen MW, Fenton MJ: Activation of TNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophage populations. J Leukoc Biol 2000, 67:885-893.
  • [67]Naqvi S, Macdonald A, McCoy CE, Darragh J, Reith AD, Arthur JS: Characterization of the cellular action of the MSK inhibitor SB-747651A. Biochem J 2012, 441:347-357.
  • [68]Guzzo C, Mat NFC, Gee K: Interleukin-27 induces a STAT1/3- and NF-kappa B-dependent proinflammatory cytokine profile in human monocytes. (vol 285, pg 24404, 2010). J Biol Chem 2012, 287:8661-8671.
  • [69]Kovacic JC, Gupta R, Lee AC, Ma M, Fang F, Tolbert CN, Walts AD, Beltran LE, San H, Chen G, Hilaire CS, Boehm M: Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J Clin Invest 2010, 120:303-314.
  • [70]Brueckmann M, Hoffmann U, Dvortsak E, Lang S, Kaden JJ, Borggrefe M, Haase KK: Drotrecogin alfa (activated) inhibits NF-kappa B activation and MIP-1-alpha release from isolated mononuclear cells of patients with severe sepsis. Inflamm Res 2004, 53:528-533.
  • [71]Kelly J, Spolski R, Imada K, Bollenbacher J, Lee S, Leonard WJ: A role for Stat5 in CD8+ T cell homeostasis. J Immunol 2003, 170:210-217.
  • [72]Amella CA, Sherry B, Shepp DH, Schmidtmayerova H: Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP. J Virol 2005, 79:5625-5631.
  • [73]Ohmori Y, Schreiber RD, Hamilton TA: Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem 1997, 272:14899-14907.
  • [74]Ottonello L, Montecucco F, Bertolotto M, Arduino N, Mancini M, Corcione A, Pistoia V, Dallegri F: CCL3 (MIP-1alpha) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 2005, 17:355-363.
  • [75]Hiura TS, Kempiak SJ, Nel AE: Activation of the human RANTES gene promoter in a macrophage cell line by lipopolysaccharide is dependent on stress-activated protein kinases and the IkappaB kinase cascade: implications for exacerbation of allergic inflammation by environmental pollutants. Clin Immunol 1999, 90:287-301.
  • [76]Leyva-Illades D, Cherla RP, Lee MS, Tesh VL: Regulation of cytokine and Chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012, 80:2109-2120.
  • [77]Dai X, Sayama K, Tohyama M, Shirakata Y, Yang L, Hirakawa S, Tokumaru S, Hashimoto K: The NF-kappaB, p38 MAPK and STAT1 pathways differentially regulate the dsRNA-mediated innate immune responses of epidermal keratinocytes. Int Immunol 2008, 20:901-909.
  • [78]Jordan NJ, Watson ML, Yoshimura T, Westwick J: Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts. Br J Pharmacol 1996, 117:1245-1253.
  • [79]Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY: Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003, 101:3568-3573.
  • [80]Zhang Y, Zhai Q, Luo Y, Dorf ME: RANTES-mediated chemokine transcription in astrocytes involves activation and translocation of p90 ribosomal S6 protein kinase (RSK). J Biol Chem 2002, 277:19042-19048.
  • [81]Hobbs RM, Watt FM: Regulation of interleukin-1alpha expression by integrins and epidermal growth factor receptor in keratinocytes from a mouse model of inflammatory skin disease. J Biol Chem 2003, 278:19798-19807.
  • [82]Bird TA, Schule HD, Delaney P, de Roos P, Sleath P, Dower SK, Virca GD: The interleukin-1-stimulated protein kinase that phosphorylates heat shock protein hsp27 is activated by MAP kinase. FEBS Lett 1994, 338:31-36.
  • [83]Hashimoto S, Matsumoto K, Gon Y, Maruoka S, Kujime K, Hayashi S, Takeshita I, Horie T: p38 MAP kinase regulates TNF alpha-, IL-1 alpha- and PAF-induced RANTES and GM-CSF production by human bronchial epithelial cells. Clin Exp Allergy 2000, 30:48-55.
  • [84]Bailly S, Fay M, Israel N, Gougerot-Pocidalo MA: The transcription factor AP-1 binds to the human interleukin 1 alpha promoter. Eur Cytokine Netw 1996, 7:125-128.
  • [85]Mori N, Prager D: Transactivation of the interleukin-1 alpha promoter by human T-cell leukemia virus. Leuk Lymphoma 1997, 26:421-433.
  • [86]Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT: Regulation of macrophage activation. Cell Mol Life Sci 2003, 60:2334-2346.
  • [87]Shaw G, Kamen R: A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986, 46:659-667.
  • [88]Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G: Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999, 10:387-398.
  • [89]Oppenheim JJ, Murphy WJ, Chertox O, Schirrmacher V, Wang JM: Prospects for cytokine and chemokine biotherapy. Clin Cancer Res 1997, 3:2682-2686.
  • [90]Ogawa T, Kusumoto M, Kuroki S, Nagata S, Yamanaka N, Kawano R, Yoshida J, Shinohara M, Matsuo K: Adjuvant GM-CSF cytokine gene therapy for breast cancer. Gan to kagaku ryoho Cancer Chemother 2001, 28:1512-1514.
  • [91]Beutler B, Cerami A: The biology of cachectin/TNF–a primary mediator of the host response. Annu Rev Immunol 1989, 7:625-655.
  • [92]Wang Y, Wu TR, Cai S, Welte T, Chin YE: Stat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-kappaB activation. Mol Cell Biol 2000, 20:4505-4512.
  • [93]Dinarello CA: The biological properties of interleukin-1. Eur Cytokine Netw 1994, 5:517-531. http://www.ncbi.nlm.nih.gov/pubmed/7727685 webcite
  • [94]Tsai EY, Falvo JV, Tsytsykova AV, Barczak AK, Reimold AM, Glimcher LH, Fenton MJ, Gordon DC, Dunn IF, Goldfeld AE: A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol Cell Biol 2000, 20:6084-6094.
  • [95]Frodin M, Gammeltoft S: Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 1999, 151:65-77.
  • [96]Asadi B, Maurya MR, Tartakovsky DM, Subramaniam S: Comparison of statistical and optimisation-based methods for data-driven network reconstruction of biochemical systems. IET Syst Biol 2012, 6:155-163.
  • [97]Rensink AA, Gellekink H, Otte-Holler I, ten Donkelaar HJ, de Waal RM, Verbeek MM, Kremer B: Expression of the cytokine leukemia inhibitory factor and pro-apoptotic insulin-like growth factor binding protein-3 in Alzheimer’s disease. Acta Neuropathol 2002, 104:525-533.
  • [98]Davatelis G, Tekamp-Olson P, Wolpe SD, Hermsen K, Luedke C, Gallegos C, Coit D, Merryweather J, Cerami A: Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med 1988, 167:1939-1944.
  • [99]Rossi D, Zlotnik A: The biology of chemokines and their receptors. Annu Rev Immunol 2000, 18:217-242.
  • [100]Bondeson J, Browne KA, Brennan FM, Foxwell BM, Feldmann M: Selective regulation of cytokine induction by adenoviral gene transfer of IkappaBalpha into human macrophages: lipopolysaccharide-induced, but not zymosan-induced, proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-kappaB independent. J Immunol 1999, 162:2939-2945.
  • [101]Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F, Kumar A: The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem 2001, 276:13664-13674.
  • [102]Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011, 1813:878-888.
  • [103]Bretscher O: Linear Algebra With Applications. 5th edition. Boston: Pearson Education; 2013.
  • [104]DeGroot MH, Schervish MJ: Probability and statistics. 4th edition. Boston: Addison-Wesley; 2012.
  文献评价指标  
  下载次数:43次 浏览次数:22次