期刊论文详细信息
BMC Microbiology
The promoter of filamentation (POF1) protein from Saccharomyces cerevisiae is an ATPase involved in the protein quality control process
Gisele Monteiro4  Fernanda M Prado1  Sayuri Miyamoto1  Luis ES Netto3  Rafaella MP Nascimento3  Marilene Demasi2  Tallybia HT Nasser4  Iris M Costa4 
[1] Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo - USP, São Paulo-SP, Brazil;Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo-SP, Brazil;Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo-SP, Brazil;Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo-SP, Brazil
关键词: antioxidant response;    endoplasmic reticulum stress;    unfolded protein response;   
Others  :  1222055
DOI  :  10.1186/1471-2180-11-268
 received in 2011-08-31, accepted in 2011-12-28,  发布年份 2011
PDF
【 摘 要 】

Background

The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.

Results

Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.

Conclusions

Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.

【 授权许可】

   
2011 Costa et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150805010815333.pdf 1184KB PDF download
Figure 6. 19KB Image download
Figure 5. 34KB Image download
Figure 4. 42KB Image download
Figure 3. 34KB Image download
Figure 2. 35KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Leidhold C, Voos W: Chaperones and proteases--guardians of protein integrity in eukaryotic organelles. Ann N Y Acad Sci 2007, (1113):72-86.
  • [2]Carvalho P, Goder V, Rapoport TA: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 2006, 126:361-373.
  • [3]Denic V, Quan EM, Weissman JS: A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 2006, 126:349-359.
  • [4]Carvalho P, Stanley AM, Rapoport TA: Retrotranslocation of a misfolded luminal ER protein by ubiquitin-ligase Hrd1p. Cell 2010, 143:579-591.
  • [5]Turner GC, Varshavsky A: Detecting and measuring cotranslational protein degradation in vivo. Science 2000, 289:2117-2120.
  • [6]Schubert U, Antón LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR: Nature. 2000, 404:770-774.
  • [7]Bengtson MH, Joazeiro CAP: Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 2010, 467:470-473.
  • [8]Tsai YC, Weissman AM: The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer 2010, 1:764-778.
  • [9]Douglas PM, Dillin A: Protein homeostasis and aging in neurodegeneration. J Cell Biol 2010, 190:719-729.
  • [10]Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2011, 10:29-46.
  • [11]Gardner RG, Shearer AG, Hampton RY: In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol Cell Biol 2001, 21:4276-4291.
  • [12]Schuck S, Prinz WA, Thorn KS, Voss C, Walter P: Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 2009, 187:525-536.
  • [13]Wilson JD, Thompson SL, Barlowe C: Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor. Mol Biol Cell 2011, 22:1430-1439.
  • [14]Rubio C, Pincus D, Korennykh A, Schuck S, El-Samad H, Walter P: Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol 2011, 193:171-184.
  • [15]Ismail N, Ng DT: Have you HRD? Understanding ERAD is DOAble! Cell 2006, 126:237-239.
  • [16]Haynes CM, Caldwell S, Cooper AA: An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. J Cell Biol 2002, 158:91-101.
  • [17]Spear ED, Ng DT: Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 2003, 14:2756-2767.
  • [18]Philip B, Levin DE: Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 2001, 21:271-280.
  • [19]Fasolo J, Sboner A, Sun MG, Yu H, Chen R, Sharon D, Kim PM, Gerstein M, Snyder M: Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev 2011, 25:767-778.
  • [20]Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P: Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000, 101:249-258.
  • [21]Pineau L, Ferreira T: Lipid-induced ER stress in yeast and β cells: parallel trails to a common fate. FEMS Yeast Res 2010, 10:1035-1045.
  • [22]Hesselberth JR, Miller JP, Golob A, Stajich JE, Michaud GA, Fields S: Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol 2006, 7:R30. BioMed Central Full Text
  • [23]Hart GT, Lee I, Marcotte ER: A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 2007, 8:236. BioMed Central Full Text
  • [24]Saeki Y, Kudo T, Kawamura H, Tanaka K: Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
  • [25]Veitch DP, Gilham D, Cornell RB: The role of histidine residues in the HXGH site of CTP:phosphocholine cytidylyltransferase in CTP binding and catalysis. Eur J Biochem 1998, 255:227-234.
  • [26]Howe AG, Zaremberg V, McMaster CR: Cessation of growth to prevent cell death due to inhibition of phosphatidylcholine synthesis is impaired at 37 degrees C in Saccharomyces cerevisiae. J Biol Chem 2002, 277:44100-44107.
  • [27]Biederer T, Volkwein C, Sommer T: Role of Cue1p in ubiquitination and degradation at the ER surface. Science 1997, 278:1806-1809.
  • [28]Steel GJ, Fullerton DM, Tyson JR, Stirling CJ: Coordinated activation of Hsp70 chaperones. Science 2004, 303:98-101.
  • [29]Pitre S, Dehne F, Chan A, Cheetham J, Duong A, Emili A, Gebbia M, Greenblatt J, Jessulat M, Krogan N, Luo X, Golshani A: PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. BMC Bioinformatics 2006, 7:365. BioMed Central Full Text
  • [30]Michelsen K, Schmid V, Metz J, Heusser K, Liebel U, Schwede T, Spang A, Schwappach B: Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 2007, 179:209-217.
  • [31]Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK: Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci USA 2002, 99:1461-1466.
  • [32]Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010, 107:8788-8793.
  • [33]Hamanaka RB, Chandel NS: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 2010, 35:505-513.
  • [34]Meyer HH, Kondo H, Warren G: The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett 1998, 437:255-257.
  • [35]Ye Y, Meyer HH, Rapoport TA: Function of p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 2003, 162:71-84.
  • [36]Wang S, Ng DT: Evasion of endoplasmic reticulum surveillance makes Wsc1p an obligate substrate of Golgi quality control. Mol Biol Cell 2010, 21:1153-1165.
  • [37]Behrends C, Sowa ME, Gygi SP, Harper JW: Network organization of the human autophagy system. Nature 2010, 466:68-76.
  • [38]Dowd SR, Bier ME, Patton-Vogt JL: Turnover of phosphatidylcholine in Saccharomyces cerevisiae. The role of the CDP-choline pathway. J Biol Chem 2001, 276:3756-3763.
  • [39]Prinz S, Avila-Campillo I, Aldridge C, Srinivasan A, Dimitrov K, Siegel AF, Galitski T: Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res 2004, 14:380-390.
  • [40]Rida PC, Nishikawa A, Won GY, Dean N: Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol Biol Cell 2006, 17:4364-4378.
  • [41]Wimalasena TT, Enjalbert B, Guillemette T, Plumridge A, Budge S, Yin Z, Brown AJ, Archer DB: Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genet Biol 2008, 45:1235-1247.
  • [42]Colomina N, Ferrezuelo F, Vergés E, Aldea M, Garí E: Whi3 regulates morphogenesis in budding yeast by enhancing Cdk functions in apical growth. Cell Cycle 2009, 8:1912-1920.
  • [43]Ausubel FM, Brent R, Moore DD, Seidman JA, Smith JA, Struhl K: Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, NY; 1998:13.0.3-13.13.7.
  • [44]Sohal PS, Cornell RB: Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem 1990, 265:11746-11750.
  文献评价指标  
  下载次数:39次 浏览次数:22次