期刊论文详细信息
BMC Systems Biology
Probing the role of stochasticity in a model of the embryonic stem cell – heterogeneous gene expression and reprogramming efficiency
Carsten Peterson3  Victor Olariu1  Vijay Chickarmane2 
[1] Computational Biology & Biological Physics, Lund University, Lund, Sweden;Division of Biology, California Institute of Technology, , Pasadena, USA;Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
关键词: Reprogramming;    Differentiation;    Computational model;    Stochasticity;    Heterogeneity;    Stem cells;   
Others  :  1143745
DOI  :  10.1186/1752-0509-6-98
 received in 2011-12-29, accepted in 2012-07-24,  发布年份 2012
PDF
【 摘 要 】

Background

Embryonic stem cells (ESC) have the capacity to self-renew and remain pluripotent, while continuously providing a source of a variety of differentiated cell types. Understanding what governs these properties at the molecular level is crucial for stem cell biology and its application to regenerative medicine. Of particular relevance is to elucidate those molecular interactions which govern the reprogramming of somatic cells into ESC. A computational approach can be used as a framework to explore the dynamics of a simplified network of the ESC with the aim to understand how stem cells differentiate and also how they can be reprogrammed from somatic cells.

Results

We propose a computational model of the embryonic stem cell network, in which a core set of transcription factors (TFs) interact with each other and are induced by external factors. A stochastic treatment of the network dynamics suggests that NANOG heterogeneity is the deciding factor for the stem cell fate. In particular, our results show that the decision of staying in the ground state or commitment to a differentiated state is fundamentally stochastic, and can be modulated by the addition of external factors (2i/3i media), which have the effect of reducing fluctuations in NANOG expression. Our model also hosts reprogramming of a committed cell into an ESC by over-expressing OCT4. In this context, we recapitulate the important experimental result that reprogramming efficiency peaks when OCT4 is over-expressed within a specific range of values.

Conclusions

We have demonstrated how a stochastic computational model based upon a simplified network of TFs in ESCs can elucidate several key observed dynamical features. It accounts for (i) the observed heterogeneity of key regulators, (ii) characterizes the ESC under certain external stimuli conditions and (iii) describes the occurrence of transitions from the ESC to the differentiated state. Furthermore, the model (iv) provides a framework for reprogramming from somatic cells and conveys an understanding of reprogramming efficiency as a function of OCT4 over-expression.

【 授权许可】

   
2012 Chickarmane et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329232621540.pdf 1232KB PDF download
Figure 4. 52KB Image download
Figure 3. 48KB Image download
Figure 2. 108KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Nichols J, Smith A: The origin and identity of embryonic stem cells. Development 2011, 138(1):3-8.
  • [2]Peltier J, Schaffer DV: Systems biology approaches to understanding stem cell fate choice. Iet Syst Biol 2010, 4(1):1-11.
  • [3]MacArthur BD, Ma’ayan A, Lemischka IR: Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 2009, 10(10):672-681.
  • [4]Enver T, Pera M, Peterson C, Andrews PW: Stem Cell States, Fates, and the Rules of Attraction. Cell Stem Cell 2009, 4(5):387-397.
  • [5]Huang S: Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philos Trans R Soc Lond B Biol Sci 2011, 366(1575):2247-59.
  • [6]Artyomov MN Meissner A Chakraborty AK: A Model for Genetic and Epigenetic Regulatory Networks Identifies Rare Pathways for Transcription Factor Induced Pluripotency. PLoS Comput Biol 2010, 6(5):e1000785.
  • [7]Silva J, Smith A: Capturing pluripotency. Cell 2008, 132(4):532-6.
  • [8]Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003, 113(5):631-42.
  • [9]Boyer L, Lee T, Cole M, Johnstone S, Levine S, Zucker J, Guenther M, Kumar R, Murray H, Jenner R, Gifford D, Melton D, Jaenisch R, Young R: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-56.
  • [10]Niwa H: How is pluripotency determined and maintained? Development 2007, 134(4):635-46.
  • [11]Chew J, Loh Y, Zhang W, Chen X, Tam W, Yeap L, Li P, Ang Y, Lim B, Robson P, Ng H: Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005, 25(14):6031-46.
  • [12]Smith A, Heath J, Donaldson D, Wong G, Moreau J, Stahl M, Rogers D: Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988, 336:688-690.
  • [13]Smith A: Embryo-derived stem cells: Of mice and men. Annu Rev Cell Dev Biol 2001, 17:435-462.
  • [14]Ying Q, Nichols J, Chambers I, Smith A: BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003, 115(3):281-92.
  • [15]Ying Q, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A: The ground state of embryonic stem cell self-renewal. Nature 2008, 453:1027-1032.
  • [16]Balazsi G, van Oudenaarden A, Collins JJ: Cellular Decision Making and Biological Noise: From Microbes to Mammals. Cell 2011, 144(6):910-925.
  • [17]Eldar A, Elowitz MB: Functional roles for noise in genetic circuits. Nature 2010, 467(7312):167-73.
  • [18]Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A: Nanog safeguards pluripotency and mediates germline development. Nature 2007, 450:1230-1234.
  • [19]Singh AM, Hamazaki T, Hankowski KE, Terada N: A Heterogeneous Expression Pattern for Nanog in Embryonic Stem Cells. Cell Stem Cells 2007, 25:2534-2542.
  • [20]Kalmar T, Lim C, Hayward P, Muoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A: Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells. PLoS Biol 2009, 7(7):e1000149.
  • [21]Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H: Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 2008, 135:909-918.
  • [22]Hayashi K, Chuva de SousaLopesS Tang F: Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States. Cell Stem Cell 2008, 3(4):391-401.
  • [23]Osorno R, Chambers I: Transcription factor heterogeneity and epiblast pluripotency. Phil Trans R Soc B 2011, 366:2230-2237.
  • [24]Silva J, Nichols J, Theunissen T, Guo G, van Oosten A W, Barrandon O, Wray SJ, amd Yamanaka Chambers I: Nanog Is the Gateway to the Pluripotent Ground State. Cell 2009, 138(4):722-737.
  • [25]Wray J, Kalkan T, Smith AG: The ground state of pluripotency. Biochem Soc Trans 2010, 38:1027-1032.
  • [26]Chickarmane V, Troein C, Nuber UA, Sauro H, Peterson C: Transcriptional Dynamics of the Embryonic Stem Cell Switch. PLoS Comput Biol 2006, 2(9):e123.
  • [27]Chickarmane V, Peterson C: A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS One 2008, 3(10):e3478.
  • [28]Glauche I, Herberg M, Roeder I: Nanog Variability and Pluripotency Regulation of Embryonic Stem Cells - Insights from a Mathematical Model Analysis. PLoS One 2010, 5(6):e11238.
  • [29]Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S: Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 2011, 474:225-229.
  • [30]Papapetrou EP, Tomishimac MJ, Chambers SM, Micae Y, Reed E, Menona J, Tabara V, Mog Q, Studer L, Sadelain M: Stoichiometric and temporal requirements of Oct4,Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 2009, 31:12759-112764.
  • [31]Niakan K, Ji H, Maehr R, Vokes S, Rodolfa K, Sherwood R, Yamaki M, Dimos J, Chen A, Melton D, McMahon A, Eggan K: Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 2010, 24:312-326.
  • [32]Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A: FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007, 134:2895-2902.
  • [33]Masui S: Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. Int J Hematol 2010, 91:360-372.
  • [34]Lanner F, Rossant J: The role of FGF/Erk signaling in pluripotent cells. Development 2010, 137(20):3351-60.
  • [35]Stavridis MP, Lunn JS, Collins BJ, Storey KG: A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 2007, 134:2889-2894.
  • [36]Yuan H, Corbi N, Basilico C, Dailey L: Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995, 9:2635-2645.
  • [37]Loh YH, Zhang W, Chen X, George J, Ng HH: Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Dev 2007, 21:2545-2557.
  • [38]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 2003, 100:11980-11985.
  • [39]Kaern M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005, 6(6):451-64.
  • [40]Raj A, van Oudenaarden A: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 2008, 135(2):216-26.
  • [41]Shahrezaei V, Swain PS: The stochastic nature of biochemical networks. Curr Opin Biotechnol 2008, 19(4):369-74.
  • [42]Swain PS, Elowitz MB, Siggia ED: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 2008, 99(20):12795-800.
  • [43]Enver T, Heyworth CM, Dexter TM: Do Stem Cells Play Dice? Blood 1997, 92:2348-351.
  • [44]Graf T, Enver T: Forcing cells to change lineages. Nature 2009, 462:587-594.
  • [45]Gillespie DT: Exact Stochastic Simulation of Coupled Chemical Reactions. J Physical Chem 1977, 81(25):2340-2361.
  • [46]Kampen NV: Stochastic Processes in Physics and Chemistry. Institute of Theoretical Physics, University of Utrecht,. North Holland, The Netherlands; 1992.
  • [47]Elf J, Ehrenberg M: Fast Evaluation of Fluctuations in Biochemical Networks With the Linear Noise Approximation. Genome Res 2003, 13(11):2475-2484.
  • [48]Paulsson J: Summing up the noise in gene networks. Nature 2004, 427:415-418.
  • [49]Takahashi K, Yamanaka S: Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126(4):663-676.
  • [50]Bourillot P, Aksoy I, Schreiber V, Wianny F, Schulz H, Hummel O, Hubner N, Savatier P: Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells 2009, 27(8):1760-71.
  • [51]Bourillot PY, Savatier P: Krüppel-like transcription factors and control of pluripotency. BMC Biol 2010, 8:125. BioMed Central Full Text
  • [52]Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24(4):372-376.
  • [53]Okita K, Yamanaka S: Induced pluripotent stem cells: opportunities and challenges. Phil Trans R Soc 2011, 366:2198-2207.
  • [54]Villasante A, Piazzolla D, Li H, Gomez-Lopez G, Djabali M, Serrano M: Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. Cell Cycle 2011, 10(9):1488-98.
  • [55]Hankowski KE, Terada N: An Ezh way to turn off Nanog. Cell Cycle 2011, 10(14):2253-4.
  • [56]Herberg M, Roeder I: Epigenetic Nanog regulation and the role of functional heterogeneity. Cell Cycle 2011, 14:2252-2253.
  • [57]Krupinski P, Chickarmane V, Peterson C: Simulating the Mammalian Blastocyst - Molecular and Mechanical Interactions Pattern the Embryo. PLoS Comput Biol 2011, 7(5):e1001128.
  • [58]Wang J, Levasseur D, Orkin S: Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 2008, 105(17):6326-31.
  • [59]Shea M, Ackers G: The OR control system of bacteriophage λ. A physical chemical model for gene regulation. J Mol Biol 1985, 181:211-230.
  • [60]Buchler N, Gerland U, Hwa T: On schemes of combinatorial transcription logic. Proc Natl Acad Sci U S A 2003, 100:5136-41.
  • [61]Bintu L, Buchler N, Garcia H, Gerland U, Hwa T, Kondev J, Phillips R: Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 2005, 15:116-124.
  • [62]Hasty J, Isaacs F, Dolnik M, McMillen D, Collins J: Designer gene networks: Towards fundamental cellular control. Chaos 2001, 1:201-220.
  • [63]Narula J, Gottgens B, Igoshin OA, M SA: Modeling Reveals Bistability and Low-Pass Filtering in the Network Module Determining Blood Stem Cell Fate. PLoS Comput Biol 2010, 6:e1000771.
  • [64]JDesigner [http://sourceforge.net/projects/jdesigner/ webcite]
  • [65]Oscill8, Bifurcation Program [http://sourceforge.net/projects/oscill8/ webcite]
  文献评价指标  
  下载次数:18次 浏览次数:10次