BMC Genomics | |
The influences of PRG-1 on the expression of small RNAs and mRNAs | |
Da-Wei Huang1  Shunmin He1  Runsheng Chen3  Peng Zhang1  Xubin Sun1  Tengfei Xiao3  Dong-Ya Cui2  Jia-Jia Wang1  | |
[1] Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China;College of Life Science, Yuncheng University, Yuncheng, Shanxi 044000, People’s Republic of China;Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China | |
关键词: 21U-RNAs; miRNAs; C. elegans; | |
Others : 1217338 DOI : 10.1186/1471-2164-15-321 |
|
received in 2014-01-30, accepted in 2014-04-24, 发布年份 2014 | |
【 摘 要 】
Background
In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs). Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-sensitive defects in fertility and other phenotypic defects.
Results
In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development, we demonstrated that (1) mutation of prg-1 leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of miRNAs to be down-regulated; (2) in C. elegans, approximately 3% (6% in L4) of protein-coding genes are differentially expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3) the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans.
Conclusions
In prg-1-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism underlying PRG-1 function.
【 授权许可】
2014 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20141203115408910.pdf | 900KB | download | |
Figure 8. | 25KB | Image | download |
Figure 7. | 105KB | Image | download |
Figure 6. | 18KB | Image | download |
Figure 5. | 50KB | Image | download |
Figure 4. | 26KB | Image | download |
Figure 3. | 32KB | Image | download |
Figure 2. | 30KB | Image | download |
Figure 1. | 96KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD: RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 2004, 116(6):831-841.
- [2]Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ: A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 2004, 117(1):83-94.
- [3]Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436(7051):740-744.
- [4]Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X: R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 2003, 301(5641):1921-1925.
- [5]Grishok A: Biology and Mechanisms of Short RNAs in Caenorhabditis elegans. Adv Genet 2013, 83:1-69.
- [6]Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC: Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006, 127(4):747-757.
- [7]Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavaré S, Miska EA: Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans Germline. Mol Cell 2008, 31(1):79-90.
- [8]Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC: PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008, 31(1):67-78.
- [9]Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC: Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001, 106(1):23-34.
- [10]Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello CC: Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2010, 107(8):3588-3593.
- [11]Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR, Mitani S, Carrington JC, Mello CC: Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 2009, 36(2):231-244.
- [12]Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, Duchaine TF, Mello CC, Conte D Jr: Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci U S A 2010, 107(8):3582-3587.
- [13]Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr, Mello CC: piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 2012, 150(1):65-77.
- [14]Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D Jr, Mello CC: The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 2009, 139(1):123-134.
- [15]Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK: 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009, 106(44):18674-18679.
- [16]Wedeles CJ, Wu MZ, Claycomb JM: A multitasking Argonaute: exploring the many facets of C. elegans CSR-1. Chromosome Res 2013, 21(6-7):573-586.
- [17]Wang G, Reinke V: A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol 2008, 18(12):861-867.
- [18]Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel P: Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006, 127(6):1193-1207.
- [19]Ohara T, Sakaguchi Y, Suzuki T, Ueda H, Miyauchi K, Suzuki T: The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat Struct Mol Biol 2007, 14(4):349-350.
- [20]Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC: Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 2007, 21(13):1603-1608.
- [21]Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, Zamore PD: The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007, 17(14):1265-1272.
- [22]Kirino Y, Mourelatos Z: Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 2007, 14(4):347-348.
- [23]Lamm AT, Stadler MR, Zhang H, Gent JI, Fire AZ: Multimodal RNA-seq using single-strand, double-strand, and CircLigase-based capture yields a refined and extended description of the C. elegans transcriptome. Genome Res 2011, 21(2):265-275.
- [24]Shi Z, Montgomery TA, Qi Y, Ruvkun G: High-throughput sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA pathways in nematodes. Genome Res 2013, 23(3):497-508.
- [25]Kato M, de Lencastre A, Pincus Z, Slack FJ: Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 2009, 10(5):R54. BioMed Central Full Text
- [26]Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001, 294(5543):858-862.
- [27]Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294(5543):862-864.
- [28]Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP: The microRNAs of Caenorhabditis elegans. Genes Dev 2003, 17(8):991-1008.
- [29]Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, Agarwal A, Alexander RP, Barber G, Brdlik CM, Brennan J, Brouillet JJ, Carr A, Cheung MS, Clawson H, Contrino S, et al.: Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010, 330(6012):1775-1787.
- [30]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
- [31]Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26(1):136-138.
- [32]Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 2012, 28(21):2782-2788.
- [33]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
- [34]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
- [35]Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S, Lehrbach NJ, Simard MJ, Miska EA: Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012, 337(6094):574-578.
- [36]Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD: miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 2011, 39(Database issue):D163-D169.
- [37]Lee HC, Gu W, Shirayama M, Youngman E, Conte D Jr, Mello CC: C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 2012, 150(1):78-87.
- [38]Zhang C, Montgomery TA, Gabel HW, Fischer SE, Phillips CM, Fahlgren N, Sullivan CM, Carrington JC, Ruvkun G: mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011, 108(4):1201-1208.
- [39]Fischer SE, Montgomery TA, Zhang C, Fahlgren N, Breen PC, Hwang A, Sullivan CM, Carrington JC, Ruvkun G: The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications. PLoS Genet 2011, 7(11):e1002369.
- [40]Kamminga LM, van Wolfswinkel JC, Luteijn MJ, Kaaij LJ, Bagijn MP, Sapetschnig A, Miska EA, Berezikov E, Ketting RF: Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 2012, 8(7):e1002702.
- [41]Deng W, Zhu X, Skogerbo G, Zhao Y, Fu Z, Wang Y, He H, Cai L, Sun H, Liu C, Li B, Bai B, Wang J, Jia D, Sun S, He H, Cui Y, Wang Y, Bu D, Chen R: Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. Genome Res 2006, 16(1):20-29.
- [42]Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC: CapSeq and CIP-TAP Identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 2012, 151(7):1488-1500.
- [43]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7(3):562-578.