期刊论文详细信息
BMC Systems Biology
DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data
Ziv Bar-Joseph1  Jason Ernst2  Shan Zhong3  Anthony Gitter4  William E Devanny1  Marcel H Schulz3 
[1] Machine Learning Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA;Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA;Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA;Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
关键词: ChIP-Seq;    ChIP-chip;    Dynamic networks;    Times series expression data;    Gene regulatory networks;    Systems biology;   
Others  :  1143700
DOI  :  10.1186/1752-0509-6-104
 received in 2012-02-28, accepted in 2012-07-18,  发布年份 2012
PDF
【 摘 要 】

Background

Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM) uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression leading to models that can determine when transcription factors (TFs) activate genes and what genes they regulate. DREM has been used successfully in diverse areas of biological research. However, several issues were not addressed by the original version.

Results

DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information.

Conclusions

DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks. DREM 2.0 can be downloaded from: http://www.sb.cs.cmu.edu/drem webcite.

【 授权许可】

   
2012 Schulz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329202729692.pdf 2020KB PDF download
Figure 6 . 50KB Image download
Figure 5 . 42KB Image download
Figure 4 . 45KB Image download
Figure 3 . 54KB Image download
Figure 2 . 90KB Image download
Figure 1 . 28KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

【 参考文献 】
  • [1]Friedman N: Inferring cellular networks using probabilistic graphical models. Science (New York, N.Y.) 2004, 303(5659):799-805.
  • [2]Markowetz F, Spang R: Inferring cellular networks–a review. BMC Bioinf 2007, 8(Suppl 6):S5. BioMed Central Full Text
  • [3]Lee WP, Tzou WS: Computational methods for discovering gene networks from expression data. Briefings Bioinf 2009, 10(4):408-423.
  • [4]Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (New York, N.Y.) 1995, 270(5235):467-470.
  • [5]Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol cell 2000, 11(12):4241-4257.
  • [6]Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science (New York, N.Y.) 2008, 321(5891):956-960.
  • [7]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet 2009, 10:57-63.
  • [8]modENCODE Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF, Washietl S, Arshinoff BI, Ay F, Meyer PE, Robine N, Washington NL, Di Stefano L, Berezikov E, Brown CD, Candeias R, Carlson JW, Carr A, Jungreis I, Marbach D, Sealfon R, Tolstorukov MY, Will S, Alekseyenko AA, Artieri C, et al.: Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science (New York, N.Y.) 2010, 330(6012):1787-1797.
  • [9]Ernst J, Nau GJ, Bar-Joseph Z: Clustering short time series gene expression data. Bioinformatics (Oxford, England) 2005, 21(Suppl 1):i159—68.
  • [10]Schliep A, Costa IG, Steinhoff C, Schönhuth A: Analyzing gene expression time-courses. IEEE/ACM Trans Comput Biol Bioinf / IEEE , ACM 2005, 2(3):179-193.
  • [11]Costa IG, Roepcke S, Hafemeister C, Schliep A: Inferring differentiation pathways from gene expression. Bioinformatics (Oxford, England) 2008, 24(13):i156-i164.
  • [12]Song L, Kolar M, Xing EP: KELLER: estimating time-varying interactions between genes. Bioinformatics (Oxford, England) 2009, 25(12):i128-36.
  • [13]Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431(7006):308-312.
  • [14]Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM, MacArthur BD, Lachmann A, Rozov R, Ma’ayan A, Boyer LA, Troyanskaya OG, Whetton AD, Lemischka IR: Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 2009, 462(7271):358-362.
  • [15]MacArthur BD, Lachmann A, Lemischka IR, Ma’ayan A: GATE: software for the analysis and visualization of high-dimensional time series expression data. Bioinformatics (Oxford, England) 2010, 26:143-144.
  • [16]Bromberg KD, Ma’ayan A, Neves SR, Iyengar R: Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science (New York, N.Y.) 2008, 320(5878):903-909.
  • [17]Baugh LR, Hill AA, Claggett JM, Hill-Harfe K, Wen JC, Slonim DK, Brown EL, Hunter CP: The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development (Cambridge, England) 2005, 132(8):1843-1854.
  • [18]Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP: Network component analysis: reconstruction of regulatory signals in biological systems. Proc Nat Acad Sci USA 2003, 100(26):15522-15527.
  • [19]Seok J, Xiao W, Moldawer LL, Davis RW, Covert MW: A dynamic network of transcription in LPS-treated human subjects. BMC Syst Biol 2009, 3:78. BioMed Central Full Text
  • [20]Bansal M, Della Gatta G, di Bernardo D: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics (Oxford, England) 2006, 22(7):815-822.
  • [21]Pournara I, Wernisch L: Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinf 2007, 8:61. BioMed Central Full Text
  • [22]Friedman N, Murphy K: Learning the structure of dynamic probabilistic networks. In UAI’98 Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc.; 1998:139-147.
  • [23]Wilczyński B, Dojer N: BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics (Oxford, England) 2009, 25(2):286-287.
  • [24]Vinh N, Chetty M, Coppel R: GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion. Bioinformatics (Oxford, England) 2011, 27:2765-2766.
  • [25]Ernst J, Vainas O, Harbison CT, Simon I, Bar-Joseph Z: Reconstructing dynamic regulatory maps. Mol Syst Biol 2007, 3:74.
  • [26]Ernst J, Beg QK, Kay KA, Balázsi G, Oltvai ZN, Bar-Joseph Z: A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput Biol 2008, 4(3):e1000044.
  • [27]Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H: Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Molecular Systems Biol 2011, 7:538.
  • [28]Gu F, Hsu PY, Wu J, Ma Y, Parvin J, Huang THM, Jin VX: Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data. BMC Syst Biol 2010, 4:170. BioMed Central Full Text
  • [29]Ni L, Bruce C, Hart C, Leigh-Bell J, Gelperin D, Umansky L, Gerstein MB, Snyder M: Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Dev 2009, 23(11):1351-1363.
  • [30]Wilczyński B, Furlong EEM: Dynamic CRM occupancy reflects a temporal map of developmental progression. Mol Syst Biol 2010, 6:383.
  • [31]Bederson B, Grosjean J, Meyer J: Toolkit design for interactive structured graphics. Software Eng, IEEE Trans 30(8):535-546.
  • [32]The Apache XML Graphics Project: Batik SVG Toolkit. [http://xmlgraphics.apache.org/batik/ webcite]
  • [33]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Gen 2000, 25:25-29.
  • [34]Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431(7004):99-104.
  • [35]Macisaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E: An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinf 2006, 7:113. BioMed Central Full Text
  • [36]Ernst J, Plasterer HL, Simon I, Bar-Joseph Z: Integrating multiple evidence sources to predict transcription factor binding in the human genome. Genome Res 2010, 20(4):526-536.
  • [37]ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447(7146):799-816.
  • [38]Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E: AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 2006, 140(3):818-829.
  • [39]Nymark P, Lindholm PM, Korpela MV, Lahti L, Ruosaari S, Kaski S, Hollmén J, Anttila S, Kinnula VL, Knuutila S: Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics 2007, 8:62. BioMed Central Full Text
  • [40]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics (Oxford, England) 2003, 19(2):185-193.
  • [41]Huggins P, Zhong S, Shiff I, Beckerman R, Laptenko O, Prives C, Schulz MH, Simon I, Bar-Joseph Z: DECOD: fast and accurate discriminative DNA motif finding. Bioinformatics (Oxford, England) 2011, 27(17):2361-2367.
  • [42]Schmid CD, Perier R, Praz V, Bucher P: EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 2006, 34(Database issue):D82—D85.
  • [43]Mahony S, Benos PV: STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 2007, 35(Web Server issue):W253-W258.
  • [44]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34(Database issue):D108-D110.
  • [45]Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C, Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita A, Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang Z: The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010, 465(7297):473-477.
  • [46]Roider HG, Kanhere A, Manke T, Vingron M: Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics (Oxford, England) 2007, 23(2):134-141.
  • [47]Kuo D, Tan K, Zinman G, Ravasi T, Bar-Joseph Z, Ideker T: Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biol 2010, 11(7):R77. BioMed Central Full Text
  文献评价指标  
  下载次数:47次 浏览次数:9次