期刊论文详细信息
BMC Molecular Biology
Temperature-induced variation in gene expression burst size in metazoan cells
Olivier Gandrillon1  Guillaume Beslon3  Elodie Vallin1  Sam Meyer4  Ophélie Arnaud2 
[1] Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d’Italie, Lyon, 69007, France;Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan;Inria Team Beagle, Inria Center Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France;INSA-Lyon, CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Université de Lyon, Lyon, 69622, France
关键词: Temperature;    Stochastic model;    Expression noise;   
Others  :  1234459
DOI  :  10.1186/s12867-015-0048-2
 received in 2015-03-09, accepted in 2015-11-10,  发布年份 2015
PDF
【 摘 要 】

Background

Gene expression is an inherently stochastic process, owing to its dynamic molecular nature. Protein amount distributions, which can be acquired by cytometry using a reporter gene, can inform about the mechanisms of the underlying microscopic molecular system.

Results

By using different clones of chicken erythroid progenitor cells harboring different integration sites of a CMV-driven mCherry protein, we investigated the dynamical behavior of such distributions. We show that, on short term, clone distributions can be quickly regenerated from small population samples with a high accuracy. On longer term, on the contrary, we show variations manifested by correlated fluctuation in the Mean Fluorescence Intensity. In search for a possible cause of this correlation, we demonstrate that in response to small temperature variations cells are able to adjust their gene expression rate: a modest (2 °C) increase in external temperature induces a significant down regulation of mean expression values, with a reverse effect observed when the temperature is decreased. Using a two-state model of gene expression we further demonstrate that temperature acts by modifying the size of transcription bursts, while the burst frequency of the investigated promoter is less systematically affected.

Conclusions

For the first time, we report that transcription burst size is a key parameter for gene expression that metazoan cells from homeotherm animals can modify in response to an external thermal stimulus.

【 授权许可】

   
2015 Arnaud et al.

【 预 览 】
附件列表
Files Size Format View
20151130025107153.pdf 1380KB PDF download
Fig.6. 13KB Image download
Fig.5. 20KB Image download
Fig.4. 19KB Image download
Fig.3. 41KB Image download
Fig.2. 27KB Image download
Fig.1. 40KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Lestas I, Vinnicombe G, Paulsson J. Fundamental limits on the suppression of molecular fluctuations. Nature. 2010; 467(7312):174-178.
  • [2]Viñuelas J, Kaneko G, Coulon A, Beslon G, Gandrillon O. Toward experimental manipulation of stochasticity in gene expression. Prog Biophys Mol Biol. 2012; 110:44-53.
  • [3]Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002; 297(5584):1183-1186.
  • [4]Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the expression of a single gene. Nat Genet. 2002; 31(1):69-73.
  • [5]Blake WJ, Kærn M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature. 2003; 422(6932):633-637.
  • [6]Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ. Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell. 2006; 24(6):853-865.
  • [7]Raser JM, O’Shea EK. Noise in gene expression: origins, consequences, and control. Science. 2005; 309(5743):2010-2013.
  • [8]Becskei A, Kaufmann BB, van Oudenaarden A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat Genet. 2005; 37(9):937-944.
  • [9]Viñuelas J, Kaneko G, Coulon A, Vallin E, Morin V, Mejia-Pous C, Kupiec J-J, Beslon G, Gandrillon O. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol. 2013; 11:15. BioMed Central Full Text
  • [10]Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H. Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 2013; 11(8):e1001621.
  • [11]Cagatay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Suel GM. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell. 2009; 139(3):512-522.
  • [12]Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM. Interplay between gene expression noise and regulatory network architecture. Trends Genet. 2012; 28:221-232.
  • [13]Paulsson J. Models of stochastic gene expression. Phys Life Rev. 2005; 2:157-175.
  • [14]Larson DR, Singer RH, Zenklusen D. A single molecule view of gene expression. Trends Cell Biol. 2009; 19(11):630-637.
  • [15]Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008; 453(7194):544-547.
  • [16]Luo Y, Lim CL, Nichols J, Martinez-Arias A, Wernisch L. Cell signalling regulates dynamics of Nanog distribution in embryonic stem cell populations. J R Soc Interface. 2013;10(78):20120525.
  • [17]Wu J, Tzanakakis ES. Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnol Adv. 2013; 31:1047-1062.
  • [18]Stockholm D, Edom-Vovard F, Coutant S, Sanatine P, Yamagata Y, Corre G, Le Guillou L, Neildez-Nguyen TM, Paldi A. Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour. PLoS One. 2010; 5(12):e14441.
  • [19]Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 2009; 7(7):e1000149.
  • [20]Beug H, Doederlein G, Freudenstein C, Graf T. Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: a model system to study erythroid differentiation in vitro. J Cell Physiol. 1982; 113 Supplt 1:195-207.
  • [21]Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One. 2011; 6(1):e16053.
  • [22]R: A language and environment for statistical computing. http://www. R-project.org/ webcite
  • [23]Shahrezaei V, Swain PS. Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA. 2008; 105(45):17256-17261.
  • [24]van Kampen NG. Stochastic processes in physics and chemistry. Elsevier 2011.
  • [25]Coulon A, Gandrillon O, Beslon G. On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Syst Biol. 2010; 4(4):2. BioMed Central Full Text
  • [26]Coulon A, Chow CC, Singer RH, Larson DR. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet. 2013; 14:572-584.
  • [27]Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 1998; 180(17):4704-4710.
  • [28]McCormick W, Penman S. Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol. 1969; 39(2):315-333.
  • [29]Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol. 2014; 15(3):R45. BioMed Central Full Text
  • [30]Corre G, Stockholm D, Arnaud O, Kaneko G, Viñuelas G, Yamagata Y, Neildez-Nguyen TMA, Kupiec J-J, Beslon G, Gandrillon O, Paldi A. Stochastic fluctuations and distributed control of gene expression impact cellular memory. Plos One. 2014;0115574.
  • [31]Clarke A. Is there a universal temperature dependence of metabolism? Funct Ecol. 2004; 18:252-256.
  • [32]Kupiec JJ. A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet. 1997; 255(2):201-208.
  • [33]Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009; 324(5930):1076-1080.
  • [34]Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012; 148(1–2):24-28.
  • [35]Paldi A. What makes the cell differentiate? Prog Biophys Mol Biol. 2012; 110(1):41-43.
  • [36]Loven J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA. Revisiting global gene expression analysis. Cell. 2012; 151(3):476-482.
  • [37]Smith S, Bernatchez L, Beheregaray LB. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genom. 2013; 14:375. BioMed Central Full Text
  • [38]Runcie DE, Garfield DA, Babbitt CC, Wygoda JA, Mukherjee S, Wray GA. Genetics of gene expression responses to temperature stress in a sea urchin gene network. Mol Ecol. 2012; 21(18):4547-4562.
  • [39]Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010; 330(6002):379-385.
  • [40]Arsenio J, Kakaradov B, Metz PJ, Kim SH, Yeo GW, Chang JT. Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nat Immunol. 2014; 15(4):365-372.
  文献评价指标  
  下载次数:40次 浏览次数:11次