| BMC Evolutionary Biology | |
| Implications of hybridisation and cytotypic differentiation in speciation assessed by AFLP and plastid haplotypes - a case study of Potentilla alpicola La Soie | |
| Christoph Dobeš2  Antonia Scherbantin2  Juraj Paule1  | |
| [1] Department of Botany and Molecular Evolution, Senckenberg Research Institute, Senckenberganlage 25, D–60325, Frankfurt/Main, Germany;Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, A–1090, Vienna, Austria | |
| 关键词: Rosaceae; Potentilla; Reproduction mode; Polyploidy; Introgression; Hybridisation; cpDNA; Apomixis; AFLP; | |
| Others : 1140665 DOI : 10.1186/1471-2148-12-132 |
|
| received in 2012-02-14, accepted in 2012-08-01, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Hybridisation is presumed to be an important mechanism in plant speciation and a creative evolutionary force often accompanied by polyploidisation and in some cases by apomixis. The Potentilla collina group constitutes a particularly suitable model system to study these phenomena as it is morphologically extensively variable, exclusively polyploid and expresses apomixis. In the present study, the alpine taxon Potentilla alpicola has been chosen in order to study its presumed hybrid origin, identify underlying evolutionary processes and infer the discreteness or taxonomic value of hybrid forms.
Results
Combined analysis of AFLP, cpDNA sequences and ploidy level variation revealed a hybrid origin of the P. alpicola populations from South Tyrol (Italy) resulting from crosses between P. pusilla and two cytotypes of P. argentea. Hybrids were locally sympatric with at least one of the parental forms. Three lineages of different evolutionary origin comprising two ploidy levels were identified within P. alpicola. The lineages differed in parentage and the complexity of the evolutionary process. A geographically wide-spread lineage thus contrasted with locally distributed lineages of different origins. Populations of P. collina studied in addition, have been regarded rather as recent derivatives of the hexaploid P. argentea. The observation of clones within both P. alpicola and P. collina suggested a possible apomictic mode of reproduction.
Conclusions
Different hybridisation scenarios taking place on geographically small scales resulted in viable progeny presumably stabilised by apomixis. The case study of P. alpicola supports that these processes played a significant role in the creation of polymorphism in the genus Potentilla. However, multiple origin of hybrids and backcrossing are considered to produce a variety of evolutionary spontaneous forms existing aside of reproductively stabilised, established lineages.
【 授权许可】
2012 Paule et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325074946565.pdf | 915KB | ||
| Figure 3 . | 43KB | Image | |
| Figure 2 . | 107KB | Image | |
| Figure 1 . | 119KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
Figure 3 .
【 参考文献 】
- [1]Lotsy JP: Evolution by means of hybridization. M. Nijhoff, The Hague; 1916.
- [2]Anderson E: Introgressive Hybridization. John Wiley & Sons, New York; 1949.
- [3]Soltis PS, Soltis DE: The role of hybridization in plant speciation. Annual Rev Pl Biol 2009, 60:561-588.
- [4]Kihara H, Ono T: Chromsomenzahlen und systematische Gruppierung der Rumex-Arten. Z Zellf Mikroskop Anat 1926, 4:475-481.
- [5]Savidan Y: Apomixis: genetics and breeding. Plant Breed Rev 2000, 18:13-86.
- [6]Krašan F: Ueber einige Kulturversuche mit Potentilla verna und cinerea. Österr Bot Z 1867, 17:273-276.
- [7]Čelakovský L: Ueber Potentilla Lindackeri Tausch und Potentilla radiata Lehm. Österr Bot Z 1889, 39:201-205.
- [8]Gentscheff GJ: Über die pseudogame Fortpflanzung bei Potentilla. Genetica 1938, 20:398-408.
- [9]Gustafsson Å: Apomixis in higher plants. Part III. Biotyp und species formation. Lunds Univ Årsskr NF Avd 2 1947, 43:183-370.
- [10]Hunziker R: Beitrag zur Aposporie und ihrer Genetik bei Potentilla. Arch Julius Klaus Stift Vererbungsforsch Sozialanthropol Rassenhyg 1954, 29:135-222.
- [11]Müntzing A, Müntzing G: Some new results concerning apomixis, sexuality and polymorphism in Potentilla. Bot Notiser 1941, 94:237-278.
- [12]Ehrendorfer F: Mediterran-mitteleuropäische Florenbeziehungen im Lichte cytotaxonomischer Befunde. Feddes Rep 1970, 81:3-32.
- [13]Dobeš C: Die Karyogeographie des Potentilla verna agg. (Rosaceae) in Österreich – mit ergänzenden Angaben aus Slowenien, Kroatien, der Slowakei und Tschechien. Ann Naturhist Mus Wien 1999, 101B:599-629.
- [14]Wolf T: Monographie der Gattung Potentilla. Biblioth Bot. 1908, 71:1-715.
- [15]Kurtto A, Lampinen R, Junikka L (Eds): Atlas Florae Europaeae 13. Distribution of vascular plants in Europe. Rosaceae (Spiraea to Fragaria, excl. Rubus). The Commitee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki; 2004.
- [16]Gregor T: Typisierungen in der Potentilla collina-Gruppe (Potentilla subgrex Collinae Th. Wolf). 1. Teil: Sippen ohne Zackenhaare. Kochia 2008, 3:61-73.
- [17]Müntzing A: Heteroploidy and polymorphism in some apomictic species of Potentilla. Hereditas 1958, 44:280-329.
- [18]Asker S, Fröst S: The “Potentilla collina problem” – a chemotaxonomic approach. Hereditas 1970, 66:49-70.
- [19]Gregor T, Rollik J, Weising K: RAPD-Untersuchungen und Chromosomenzählungen in der Potentilla-collina-Gruppe (Rosaceae). Ber Bayer Bot Ges 2002, 72:159-167.
- [20]Müntzing A: Pseudogamie in der Gattung Potentilla. Hereditas. 1928, 11:267-283.
- [21]Gentscheff GJ, Gustafsson Å: Parthenogenesis and pseudogamy in Potentilla. Bot Notiser 1940, 1940:109-132.
- [22]Håkansson A: Untersuchungen über die Embryologie einiger Potentilla-Formen. Lunds Univ Årssk NF Avd 2 1946, 42:1-70.
- [23]Müntzing A, Müntzing G: Spontaneous changes in chromosome number in apomictic Potentilla collina. Hereditas 1943, 29:451-460.
- [24]Rutishauser A: Pseudogamie und Polymorphie in der Gattung Potentilla. Arch Julius Klaus Stift Vererbungsforsch Sozialanthropol Rassenhyg 1948, 23:247-424.
- [25]Asker S: The occurrence of aberrants in some apomictic Potentilla argentea biotypes. Hereditas 1966, 56:54-70.
- [26]Käsermann C, Moser DM: Merkblätter Artenschutz – Blütenpflanzen und Farne. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern; 1999.
- [27]Ehrendorfer F (Ed): Liste der Gefäßpflanzen Mitteleuropas. Gustav Fischer, Stuttgart; 1973.
- [28]Auer M, Fees M, Neubauer S, Over M, Zipf A: A Workflow for Processing a Hillshade WMS-Layer for entire Europe based on SRTM. Poster at AGIT, Salzburg; 2009. the case of www.osm-wms.de
- [29]Doležel J, Greilhuber J, Suda J: Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2007, 2:2233-2244.
- [30]Doležel J, Bartoš J: Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 2005, 95:99-110.
- [31]Murín A: Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technol 1960, 35:351-353.
- [32]Paule J, Sharbel TF, Dobeš C: Apomictic and sexual lineages of the Potentilla argentea L. group (Rosaceae) – cytotype and molecular genetic differentiation. Taxon 2011, 60:721-732.
- [33]Scherbantin A: Methodenentwicklung zur durchflusszytometrischen Bestimmung der Chromosomenzahlen in der GattungPotentilla(Rosaceae). Diploma thesis. Department of Pharmacognosy, University of Vienna; 2009.
- [34]Dobeš C, Paule J: A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. Mol Phylogenet Evol 2010, 56:156-175.
- [35]Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small R: The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 2005, 92:142-166.
- [36]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23:4407-4414.
- [37]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
- [38]Nicholas KB, Nicholas HB, Deerfield DW: GeneDoc: analysis and visualization of genetic variation. EMBNEW News 1997, 4:14.
- [39]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
- [40]Ehrich D: AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 2006, 6:603-604.
- [41]R Development Core Team: R: A language and environment for statistical computing. , Vienna, Austria; 2009.
- [42]Nei M: Molecular Evolutionary Genetics. Columbia University Press, New York; 1987.
- [43]Meirmans PG, van Tienderen PH: Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 2004, 4:792-794.
- [44]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
- [45]Saukel J, Anchev M, Guo Y-P, Vitkova A, Nedelcheva A, Goranova V, Konakchiev A, Lambrou M, Nejati S, Rauchensteiner F, Ehrendorfer F: Comments on the biosystematics of Achillea (Asteraceae-Anthemideae) in Bulgaria. Phytol Balcan 2003, 9:361-400.
- [46]Hartung J, Elpelt B: Multivariate Statistik. Lehr- und Handbuch der angewandten Statistik. R. Oldenbourg, München & Wien; 1986.
- [47]Scherbantin A, Paule J, Dobeš C: Karyogeography and hybrid origin of European Potentilla species (Rosaceae). Sci Pharm 2009, 77:s264.
- [48]Dobeš C, Vitek E (Eds): Documented Chromosome Number Checklist of Austrian Vascular Plants. Verlag des Naturhistorischen Museums Wien, Vienna; 2000.
- [49]Mogensen HL: The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 1996, 83:383-404.
- [50]Dong YZ, Liu ZL, Shan XH, Qiu T, He MY, Liu B: Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Russ J Genet 2005, 41:890-896.
- [51]Holm S, Ghatnekar L: Apomixis and sexuality in hexaploid Potentilla argentea. Hereditas 1996, 125:53-60.
- [52]Holm S, Ghatnekar L, Bengtsson BO: Selfing and outcrossing but no apomixis in two natural populations of diploid Potentilla argentea. J Evol Biol 1997, 10:343-352.
- [53]Asker S: Apomixis and sexuality in the Potentilla argentea complex. I. Crosses with other species. Hereditas 1970, 66:127-144.
- [54]Asker S: Polymorphism of Potentilla tabernaemontani and related taxa on Gotland. Hereditas 1985, 102:39-45.
- [55]Rutishauser A: Konstante Art-und Rassenbastarde in der Gattung Potentilla. Mitt der Naturf Ges Schaffhausen 1943, 18:111-134.
- [56]Hörandl E: Species concepts in agamic complexes: applications in the Ranunculus auricomus complex and general perspectives. Folia Geobot 1998, 33:335-348.
PDF