期刊论文详细信息
BMC Genomics
The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo)
Costas S Tsigenopoulos2  Constantinos C Mylonas2  Nikos Papandroulakis2  Jenny Z Xiang1  Elena Sarropoulou2  Jacques Lagnel2  Alexandros Tsakogiannis2  Tereza Manousaki2 
[1] Genomics Resources Core Facility, Weill Cornell Medical College, New York, USA;Institute of Marine Biology, Biotechnology and Aquaculture (I.M.B.B.C.), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
关键词: Hermaphroditism;    Sex differentiation;    Brain;    Gonads;    Transcriptome;    RNA-Seq;    Diplodus puntazzo;    Sharpsnout seabream;    Sparidae;   
Others  :  1216294
DOI  :  10.1186/1471-2164-15-655
 received in 2014-03-25, accepted in 2014-07-30,  发布年份 2014
PDF
【 摘 要 】

Background

Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles.

Results

Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species.

Conclusions

We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites.

【 授权许可】

   
2014 Manousaki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630002045116.pdf 568KB PDF download
Figure 6. 25KB Image download
Figure 5. 30KB Image download
Figure 4. 73KB Image download
Figure 2. 106KB Image download
Figure 2. 34KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bull JJ: Evolution of sex determining mechanisms. Menlo Park, California: Benjamin/Cummings Pub. Co; 1983.
  • [2]Valenzuela N, Adams DC, Janzen FJ: Pattern does not equal process: exactly when is sex environmentally determined? Am Nat 2003, 161:676-683.
  • [3]Ospina-Alvarez N, Piferrer F: Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. Plos One 2008, 3(7):e2837.
  • [4]Piferrer F: Epigenetics of sex determination and gonadogenesis. Dev Dynam 2013, 242(4):360-370.
  • [5]Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN: A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346(6281):240-244.
  • [6]Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R: Male development of chromosomally female mice transgenic for Sry. Nature 1991, 351(6322):117-121.
  • [7]Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH: The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 2009, 461(7261):267-271.
  • [8]Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M: A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A 2008, 105(7):2469-2474.
  • [9]Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M: DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002, 417(6888):559-563.
  • [10]Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan ZH, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M: A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A 2002, 99(18):11778-11783.
  • [11]Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K: A trans-species missense SNP in Amhr2 is associated with sex determination in the Tiger pufferfish, Takifugu rubripes (fugu). Plos Genet 2012, 8(7):e1002798.
  • [12]Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y: An immune-related gene evolved into the master sex-determining gene in Rainbow trout, Oncorhynchus mykiss. Curr Biol 2012, 22(15):1423-1428.
  • [13]Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA: A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 2012, 109(8):2955-2959.
  • [14]Peichel CL, Ross JA, Matson CK, Dickson M, Grimwood J, Schmutz J, Myers RM, Mori S, Schluter D, Kingsley DM: The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr Biol 2004, 14(16):1416-1424.
  • [15]Palaiokostas C, Bekaert M, Khan MGQ, Taggart JB, Gharbi K, McAndrew BJ, Penman DJ: Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. Plos One 2013, 8(7):e68389.
  • [16]Palaiokostas C, Bekaert M, Davie A, Cowan ME, Oral M, Taggart JB, Gharbi K, McAndrew BJ, Penman DJ, Migaud H: Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genomics 2013, 14:566.
  • [17]Martinez P, Bouza C, Hermida M, Fernandez J, Toro MA, Vera M, Pardo B, Millan A, Fernandez C, Vilas R, Sánchez L, Felip A, Piferrer F, Ferreiro I, Cabaleiro S: Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 2009, 183(4):1443-1452.
  • [18]Bradley KM, Breyer JP, Melville DB, Broman KW, Knapik EW, Smith JR: An SNP-based linkage map for zebrafish reveals sex determination loci. G3 2011, 1(1):3-9.
  • [19]Loukovitis D, Sarropoulou E, Batargias C, Apostolidis AP, Kotoulas G, Tsigenopoulos CS, Chatziplis D: Quantitative trait loci for body growth and sex determination in the hermaphrodite teleost fish Sparus aurata L. Anim Genet 2012, 43(6):753-759.
  • [20]Loukovitis D, Sarropoulou E, Tsigenopoulos CS, Batargias C, Magoulas A, Apostolidis AP, Chatziplis D, Kotoulas G: Quantitative trait loci involved in sex determination and body growth in the Gilthead sea bream (Sparus aurata L.) through targeted genome scan. Plos One 2011, 6(1):e16599.
  • [21]Marı́n I, Baker BS: The evolutionary dynamics of sex determination. Science 1998, 281(5385):1990-1994.
  • [22]Graham P, Penn JK, Schedl P: Masters change, slaves remain. BioEssays 2003, 25(1):1-4.
  • [23]Herpin A, Adolfi MC, Nicol B, Hinzmann M, Schmidt C, Klughammer J, Engel M, Tanaka M, Guiguen Y, Schartl M: Divergent expression regulation of gonad development genes in medaka shows incomplete conservation of the downstream regulatory network of vertebrate sex determination. Mol Biol Evol 2013, 30(10):2328-2346.
  • [24]Piferrer F, Ribas L, Diaz N: Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol 2012, 14(5):591-604.
  • [25]Sreenivasan R, Cai MN, Bartfai R, Wang XG, Christoffels A, Orban L: Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. Plos One 2008, 3(3):e1791.
  • [26]Small CM, Carney GE, Mo QX, Vannucci M, Jones AG: A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 2009, 10:579.
  • [27]Zhang ZP, Wang YL, Wang SH, Liu JT, Warren W, Mitreva M, Walter RB: Transcriptome analysis of female and male Xiphophorus maculatus Jp 163 A. Plos One 2011, 6(4):e18379.
  • [28]Forconi M, Canapa A, Barucca M, Biscotti MA, Capriglione T, Buonocore F, Fausto AM, Makapedua DM, Pallavicini A, Gerdol M, De Moro G, Scapigliati G, Olmo E, Schartl M: Characterization of sex determination and sex differentiation genes in Latimeria. Plos One 2013, 8(4):e56006.
  • [29]Sun FY, Liu SK, Gao XY, Jiang YL, Perera D, Wang XL, Li C, Sun LY, Zhang JR, Kaltenboeck L, Dunham R, Liu Z: Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome. Plos One 2013, 8(7):e68452.
  • [30]Tao WJ, Yuan J, Zhou LY, Sun LN, Sun YL, Yang SJ, Li MH, Zeng S, Huang BF, Wang DH: Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. Plos One 2013, 8(5):e63604.
  • [31]Erisman BE, Petersen CW, Hastings PA, Warner RR: Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr Comp Biol 2013, 53(4):736-754.
  • [32]Buxton CD, Garratt PA: Alternative reproductive styles in seabreams (Pisces, Sparidae). Environ Biol Fish 1990, 28(1–4):113-124.
  • [33]Atz JW: Intersexuality in Fishes. In Intersexuality in Vertebrates Including Man. Edited by Marshall AJ, Armstrong CN. New York: Academic Press; 1964:145-232.
  • [34]Mylonas CC, Zohar Y, Pankhurst N, Kagawa H: Reproduction and broodstock management. In Sparidae. Edited by Pavlidis MA, Mylonas CC. Oxford, UK: Wiley-Blackwell; 2011:95-131.
  • [35]Wu GC, Chang CF: The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli. Fish Physiol Biochem 2013, 39(1):33-38.
  • [36]He CL, Du JL, Lee YH, Sun LT, Chang CF: Differential Dmrt1 transcripts in gonads of the protandrous black porgy, Acanthopagrus schlegeli. Cytogenet Genome Res 2003, 101:309-313.
  • [37]Wu GC, Tomy S, Chang CF: The expression of nr0b1 and nr5a4 during gonad development and sex change in protandrous black porgy fish, Acanthopagrus schlegeli. Biol Reprod 2008, 78(2):200-210.
  • [38]Wu GC, Tomy S, Lee MF, Lee YH, Yueh WS, Lin CJ, Lau EL, Chang CF: Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol 2010, 167(3):417-421.
  • [39]Wu GC, Tomy S, Nakamura M, Chang CF: Dual Roles of cyp19a1a in gonadal sex differentiation and development in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 2008, 79(6):1111-1120.
  • [40]Wu GC, Chang CF: wnt4 as associated with the development of ovarian tissue in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 2009, 81(6):1073-1082.
  • [41]Tomy S, Wu GC, Huang HR, Chang CF: Age-dependent differential expression of genes involved in steroid signalling pathway in the brain of protandrous black porgy, Acanthopagrus schlegeli. Dev Neurobiol 2009, 69(5):299-313.
  • [42]Tomy S, Wu GC, Huang HR, Dufour S, Chang CF: Developmental expression of key steroidogenic enzymes in the brain of protandrous black porgy fish, Acanthopagrus schlegeli. J Neuroendocrinol 2007, 19(8):643-655.
  • [43]Micale V, Perdichizzi F, Basciano G: Aspects of the reproductive biology of the sharpsnout seabream Diplodus puntazzo (Cetti, 1777).1. Gametogenesis and gonadal cycle in captivity during the third year of life. Aquaculture 1996, 140(3):281-291.
  • [44]Pajuelo JG, Lorenzo JM, Dominguez-Seoane R: Gonadal development and spawning cycle in the digynic hermaphrodite sharpsnout seabream Diplodus puntazzo (Sparidae) off the Canary Islands, northwest of Africa. J Appl Ichthyol 2008, 24(1):68-76.
  • [45]Klimogianni A, Kalanji M, Pyrenis G, Zoulioti A, Trakos G: Ontogeny of embryonic and yolk-sac larval stage of the sparid sharpsnout sea bream (Diplodus puntazzo Cetti, 1777). J Fish Aquat Sci 2011, 6:62-73.
  • [46]Papadaki M, Papadopoulou M, Siggelaki I, Mylonas CC: Egg and sperm production and quality of sharpsnout sea bream (Diplodus puntazzo) in captivity. Aquaculture 2008, 276(1–4):187-197.
  • [47]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [48]Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Merot Y, Kah O: Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neurosci 2010, 32(12):2105-2115.
  • [49]Guidelines for the treatment of animals in behavioural research and teaching Anim Behav 2001, 61(1):271-275. http://www.ncbi.nlm.nih.gov/pubmed/11170716 webcite
  • [50]de Diaz Cerio O, Rojo-Bartolome I, Bizarro C, Ortiz-Zarragoitia M, Cancio I: 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish. Environ Sci Tech 2012, 46(14):7763-7771.
  • [51]Babraham Bioinformatics: FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ webcite
  • [52]FASTX-Toolkit software packagehttp://hannonlab.cshl.edu/fastx_toolkit/ webcite
  • [53]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1(1):18.
  • [54]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [55]Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 2012, 28(8):1086-1092.
  • [56]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-U130.
  • [57]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [58]Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013. Nucleic Acids Res 2013, 41(D1):D48-D55.
  • [59]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25.
  • [60]Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323.
  • [61]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A: De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 2013, 8(8):1494-1512.
  • [62]Lagnel J, Tsigenopoulos CS, Iliopoulos I: NOBLAST and JAMBLAST: new options for BLAST and a java application manager for BLAST results. Bioinformatics 2009, 25(6):824-826.
  • [63]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [64]Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [65]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
  • [66]Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 2013, 14(9):R95.
  • [67]Soneson C, Delorenzi M: A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013, 14:91.
  • [68]Mayer C: Phobos: a tandem repeat search tool. http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm webcite
  • [69]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [70]Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R: The variant call format and VCFtools. Bioinformatics 2011, 27(15):2156-2158.
  • [71]Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT: BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 2011, 27(12):1691-1692.
  • [72]Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, Corvin AP, Morris DW: Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. Plos One 2013, 8(3):e58815.
  • [73]Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS: A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28(24):3326-3328.
  • [74]Zarkower D: DMRT Genes in vertebrate gametogenesis. Curr Top Dev Biol 2013, 102:327-356.
  • [75]Matson CK, Zarkower D: Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 2012, 13(3):163-174.
  • [76]Herpin A, Schartl M: Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. Febs J 2011, 278(7):1010-1019.
  • [77]Wu GC, Chiu PC, Lin CJ, Lyu YS, Lan DS, Chang CF: Testicular dmrt1 Is involved in the sexual fate of the ovotestis in the protandrous black porgy. Biol Reprod 2012, 86(2):41.
  • [78]Wu GC, Chiu PC, Lyu YS, Chang CF: The expression of amh and amhr2 is associated with the development of gonadal tissue and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod 2010, 83(3):443-453.
  • [79]Sekido R, Lovell-Badge R: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008, 453(7197):930-934.
  • [80]Berbejillo J, Martinez-Bengochea A, Bedo G, Brunet F, Volff JN, Vizziano-Cantonnet D: Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Mol Reprod Dev 2012, 79(8):504-516.
  • [81]Smith EK, Guzman JM, Luckenbach JA: Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria). Comp Biochem Phys B 2013, 165(2):125-137.
  • [82]Kong Y, Grimaldi M, Curtin E, Dougherty M, Kaufman C, White RM, Zon LI, Liao EC: Neural crest development and craniofacial morphogenesis is coordinated by nitric oxide and histone acetylation. Chem Biol 2014, 21(4):488-501.
  • [83]Wang DS, Kobayashi T, Senthilkumaran B, Sakai F, Sudhakumari CC, Suzuki T, Yoshikuni M, Matsuda M, Morohashi K, Nagahama Y: Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus. Biochem Bioph Res Co 2002, 297(3):632-640.
  • [84]Martins RS, Deloffre LA, Mylonas CC, Power DM, Canario AV: Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation. Reprod Biol Endocrinol 2007, 5:19.
  • [85]Nakamoto M, Wang DS, Suzuki A, Matsuda M, Nagahama Y, Shibata N: Dax1 suppresses P450arom expression in medaka ovarian follicles. Mol Reprod Dev 2007, 74(10):1239-1246.
  • [86]Bitgood MJ, Shen LY, McMahon AP: Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996, 6(3):298-304.
  • [87]Clark AM, Garland KK, Russell LD: Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 2000, 63(6):1825-1838.
  • [88]O’Hara WA, Azar WJ, Behringer RR, Renfree MB, Pask AJ: Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial. BMC Dev Biol 2011, 11:72.
  • [89]Spicer LJ, Sudo S, Aad PY, Wang LS, Chun SY, Ben-Shlomo I, Klein C, Hsueh AJW: The hedgehog-patched signaling pathway and function in the mammalian ovary: a novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction 2009, 138(2):329-339.
  • [90]Wijgerde M, Ooms M, Hoogerbrugge JW, Grootegoed JA: Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. Endocrinology 2005, 146(8):3558-3566.
  • [91]Guiguen Y, Fostier A, Piferrer F, Chang CF: Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 2010, 165(3):352-366.
  • [92]Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe SI: Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol 1999, 23(2):167-176.
  • [93]Uchida D, Yamashita M, Kitano T, Iguchi T: An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol Mol Integr Physiol 2004, 137(1):11-20.
  • [94]Karube M, Fernandino JI, Strobl-Mazzulla P, Strussmann CA, Yoshizaki G, Somoza GM, Patino R: Characterization and expression profile of the ovarian cytochrome p-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis. J Exp Zool Part A 2007, 307A(11):625-636.
  • [95]Bohne A, Heule C, Boileau N, Salzburger W: Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013, 30(10):2268-2285.
  • [96]Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, de Rooij DG, Schedl A, Chaboissier MC: WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 2012, 139(23):4461-4472.
  • [97]Li L, Ji SY, Yang JL, Li XX, Zhang J, Zhang Y, Hu ZY, Liu YX: Wnt/beta-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Mol Cell Endocrinol 2013, 382(2):915-925.
  • [98]Nicol B, Guerin A, Fostier A, Guiguen Y: Ovary-predominant wnt4 expression during gonadal differentiation is not conserved in the rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 2012, 79(1):51-63.
  • [99]Zhou LY, Charkraborty T, Yu XG, Wu LM, Liu G, Mohapatra S, Wang DS, Nagahama Y: R-spondins are involved in the ovarian differentiation in a teleost, medaka (Oryzias latipes). BMC Dev Biol 2012, 12:36.
  • [100]Benayoun BA, Dipietromaria A, Bazin C, Veitia RA: FOXL2: At the crossroads of female sex determination and ovarian function. Adv Exp Med Biol 2009, 665:207-226.
  • [101]Kobayashi Y, Horiguchi R, Nozu R, Nakamura M: Expression and localization of forkhead transcriptional factor 2 (Foxl2) in the gonads of protogynous wrasse, Halichoeres trimaculatus. Biol Sex Differ 2010, 1(1):3.
  • [102]Nakamoto M, Matsuda M, Wang DS, Nagahama Y, Shibata N: Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Bioph Res Co 2006, 344(1):353-361.
  • [103]Nakamoto M, Muramatsu S, Yoshida S, Matsuda M, Nagahama Y, Shibatal N: Gonadal sex differentiation and expression of Sox9a2, Dmrt1, and Foxl2 in Oryzias luzonensis. Genesis 2009, 47(5):289-299.
  • [104]Wang DS, Kobayashi T, Zhou LY, Nagahama Y: Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem Bioph Res Co 2004, 320(1):83-89.
  • [105]Liu Z, Wu F, Jiao B, Zhang X, Hu C, Huang B, Zhou L, Huang X, Wang Z, Zhang Y, Nagahama Y, Cheng CH, Wang D: Molecular cloning of doublesex and mab-3-related transcription factor 1, forkhead transcription factor gene 2, and two types of cytochrome P450 aromatase in Southern catfish and their possible roles in sex differentiation. J Endocrinol 2007, 194(1):223-241.
  • [106]Sridevi P, Senthilkumaran B: Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus. Gen Comp Endocrinol 2011, 174(3):259-268.
  • [107]Jiang W, Yang Y, Zhao D, Liu X, Duan J, Xie S, Zhao H: Effects of sexual steroids on the expression of foxl2 in Gobiocypris rarus. Comp Biochem Physiol B: Biochem Mol Biol 2011, 160(4):187-193.
  • [108]Trabzuni D, Ramasamy A, Imran S, Walker R, Smith C, Weale ME, Hardy J, Ryten M, Expression NAB: Widespread sex differences in gene expression and splicing in the adult human brain. Nat Commun 2013, 4:2771.
  • [109]Hiraki T, Takeuchi A, Tsumaki T, Zempo B, Kanda S, Oka Y, Nagahama Y, Okubo K: Female-specific target sites for both oestrogen and androgen in the teleost brain. Proc Biol Sci 2012, 279(1749):5014-5023.
  • [110]Godwin J: Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol 2010, 31(2):203-216.
  • [111]Vizziano-Cantonnet D, Anglade I, Pellegrini E, Gueguen MM, Fostier A, Guiguen Y, Kah O: Sexual dimorphism in the brain aromatase expression and activity, and in the central expression of other steroidogenic enzymes during the period of sex differentiation in monosex rainbow trout populations. Gen Comp Endocrinol 2011, 170(2):346-355.
  • [112]Garcia-Reyero N, Kroll KJ, Liu L, Orlando EF, Watanabe KH, Sepulveda MS, Villeneuve DL, Perkins EJ, Ankley GT, Denslow ND: Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genomics 2009, 10:308.
  • [113]Ikeda Y, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, Tsuchiya K, Tamaki T: Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. Plos One 2012, 7(7):115f.
  • [114]Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, Malki S, Dubois-Dauphin M, Boizet-Bonhoure B, Descombes P, Parker KL, Vassalli JD: Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 2005, 287(2):361-377.
  • [115]Coveney D, Ross AJ, Slone JD, Capel B: A microarray analysis of the XX Wnt4 mutant gonad targeted at the identification of genes involved in testis vascular differentiation. Gene Expr Patterns 2007, 7(1–2):82-92.
  • [116]Menke DB, Page DC: Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns 2002, 2(3–4):359-367.
  • [117]Friedrich U, Stohr H, Hilfinger D, Loenhardt T, Schachner M, Langmann T, Weber BH: The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis. Hum Mol Genet 2011, 20(6):1132-1142.
  • [118]Gholami K, Muniandy S, Salleh N: In-vivo functional study on the involvement of CFTR, SLC26A6, NHE-1 and CA isoenzymes II and XII in uterine fluid pH, volume and electrolyte regulation in rats under different sex-steroid influence. Int J Med Sci 2013, 10(9):1121-1134.
  • [119]Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P: Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009, 8(12):2624-2641.
  • [120]Skowronski MT, Leska A, Robak A, Nielsen S: Immunolocalization of aquaporin-1, -5, and -7 in the avian testis and vas deferens. J Histochem Cytochem 2009, 57(10):915-922.
  • [121]Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ: Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 2010, 67(1):123-133.
  文献评价指标  
  下载次数:36次 浏览次数:8次