期刊论文详细信息
BMC Genomics
Insights into the miRNA regulations in human disease genes
Tapash Chandra Ghosh1  Soumita Podder1  Jyotirmoy Das1 
[1] Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
关键词: Epigenetic modifications;    AREScores;    mRNA decay rates;    Cancer;    MicroRNAs;   
Others  :  1091513
DOI  :  10.1186/1471-2164-15-1010
 received in 2014-07-11, accepted in 2014-11-11,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs are a class of short non-coding RNAs derived from either cellular or viral transcripts that act post-transcriptionally to regulate mRNA stability and translation. In recent days, increasing numbers of miRNAs have been shown to be involved in the development and progression of a variety of diseases. We, therefore, intend to enumerate miRNA targets in several known disease classes to explore the degree of miRNA regulations on them which is unexplored till date.

Results

Here, we noticed that miRNA hits in cancer genes are remarkably higher than other diseases in human. Our observation suggests that UTRs and the transcript length of cancer related genes have a significant contribution in higher susceptibility to miRNA regulation. Moreover, gene duplication, mRNA stability, AREScores and evolutionary rate were likely to have implications for more miRNA targeting on cancer genes. Consequently, the regression analysis have confirmed that the AREScores plays most important role in detecting miRNA targets on disease genes. Interestingly, we observed that epigenetic modifications like CpG methylation and histone modification are less effective than miRNA regulations in controlling the gene expression of cancer genes.

Conclusions

The intrinsic properties of cancer genes studied here, for higher miRNA targeting will enhance the knowledge on cancer gene regulation.

【 授权许可】

   
2014 Das et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128172456241.pdf 344KB PDF download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Bartel D: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]Wienholds E, Plasterk R: MicroRNA function in animal development. FEBS Lett 2005, 579(26):5911-5922.
  • [3]Croce C: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009, 10(10):704-714.
  • [4]Calin G, Croce C: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-866.
  • [5]Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of human microRNA and disease associations. PLoS One 2008, 3(10):e3420.
  • [6]Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN: The human gene mutation database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Curr Protoc Bioinformatics 2012, Chapter 1:Unit1.13.
  • [7]Mok Y, Park S, Choi S: Comparative analysis of the structural and expressional parameters of microRNA target genes. Gene 2012, 497(1):103-109.
  • [8]Zhou X, Duan X, Qian J, Li F: Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 2009, 137(2):159-164.
  • [9]Cheng C, Bhardwaj N, Gerstein M: The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics 2009., 10
  • [10]Conrad B, Antonarakis S: Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 2007, 8:17-35.
  • [11]Das J, Chakraborty S, Podder S, Ghosh T: Complex-forming proteins escape the robust regulations of miRNA in human. FEBS Lett 2013, 587(14):2284-2287.
  • [12]Thomas M, Weston B, Joseph M, Wu W, Nekrutenko A, Tonellato P: Evolutionary dynamics of oncogenes and tumor suppressor genes: Higher intensities of purifying selection than other genes. Mol Biol Evol 2003, 20(6):964-968.
  • [13]Pai A, Cain C, Mizrahi-Man O, De Leon S, Lewellen N, Veyrieras J, Degner J, Gaffney D, Pickrell J, Stephens M, Pritchard JK, Gilad Y: The contribution of RNA decay quantitative trait loci to inter-individual variation in steady-state gene expression levels. PLoS Genet 2012, 8(10):e1003000.
  • [14]Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin S, Gram H, Han J: Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell 2005, 120(5):623-634.
  • [15]Sato F, Tsuchiya S, Meltzer S, Shimizu K: MicroRNAs and epigenetics. FEBS J 2011, 278(10):1598-1609.
  • [16]Chuang J, Jones P: Epigenetics and microRNAs. Pediatr Res 2007, 61(5):24R-29R.
  • [17]Costa F: Non-coding RNAs, epigenetics and complexity. Gene 2008, 410(1):9-17.
  • [18]Drummond D, Raval A, Wilke C: A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 2006, 23(2):327-337.
  • [19]Valencia-Sanchez M, Liu J, Hannon G, Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006, 20(5):515-524.
  • [20]Eisenberg E, Levanon E: Human housekeeping genes are compact. Trends Genet 2003, 19(7):362-365.
  • [21]Bergmiller T, Ackermann M, Silander O: Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet 2012, 8(6):e1002803.
  • [22]Fabbri M, Calin G, Herceg Z, Ushijima T: Epigenetics and miRNAs in human cancer. Epigenetics Cancer Pt A 2010, 70:87-99.
  • [23]Zhang Y, De S, Garner J, Smith K, Wang S, Becker K: Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Med Genomics 2010, 3:1. BioMed Central Full Text
  • [24]Lewis B, Burge C, Bartel D: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [25]Vergoulis T, Vlachos I, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou A: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012, 40(D1):D222-D229.
  • [26]Garcia D, Baek D, Shin C, Bell G, Grimson A, Bartel D: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.
  • [27]Dreszer T, Karolchik D, Zweig A, Hinrichs A, Raney B, Kuhn R, Meyer L, Wong M, Sloan C, Rosenbloom K, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, James Kent W: The UCSC genome browser database: extensions and updates 2011. Nucleic Acids Res 2012, 40(D1):D918-D923.
  • [28]Kuhn R, Haussler D, Kent W: The UCSC genome browser and associated tools. Brief Bioinform 2013, 14(2):144-161.
  • [29]Flicek P, Ahmed I, Amode M, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013. Nucleic Acids Res 2013, 41(D1):D48-D55.
  • [30]Jacobsen A, Silber J, Harinath G, Huse J, Schultz N, Sander C: Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol 2013, 20(11):1325-1332.
  • [31]Spasic M, Friedel C, Schott J, Kreth J, Leppek K, Hofmann S, Ozgur S, Stoecklin G: Genome-wide assessment of AU-rich elements by the AREScore algorithm. PLoS Genet 2012., 8(1)
  • [32]Zhang Y, Lv J, Liu H, Zhu J, Su J, Wu Q, Qi Y, Wang F, Li X: HHMD: the human histone modification database. Nucleic Acids Res 2010, 38:D149-D154.
  • [33]Hackenberg M, Barturen G, Oliver J: NGSmethDB: a database for next-generation sequencing single-cytosine-resolution DNA methylation data. Nucleic Acids Res 2011, 39:D75-D79.
  • [34]Marcoulides G: The elements of statistical learning: data mining, inference and prediction. Struct Equ Modeling 2004, 11(1):150-151.
  文献评价指标  
  下载次数:17次 浏览次数:4次