期刊论文详细信息
BMC Developmental Biology
MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis
Jianbo Yao2  George W Smith1  Gabbine Wee3  Kyung-Bon Lee3  Swamy K Tripurani2 
[1] Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA;Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
关键词: maternal to zygotic transition;    microRNA;    early embryogenesis;    oocyte;    bovine;    NOBOX;   
Others  :  1126136
DOI  :  10.1186/1471-213X-11-25
 received in 2011-01-24, accepted in 2011-05-06,  发布年份 2011
PDF
【 摘 要 】

Background

Oocyte-derived maternal RNAs drive early embryogenesis when the newly formed embryo is transcriptionally inactive. Recent studies in zebrafish have identified the role of microRNAs during the maternal-to-embryonic transition (MET). MicroRNAs are short RNAs that bind to the 3' UTR of target mRNAs to repress their translation and accelerate their decay. Newborn ovary homeobox gene (NOBOX) is a transcription factor that is preferentially expressed in oocytes and essential for folliculogenesis in mice. NOBOX knockout mice are infertile and lack of NOBOX disrupts expression of many germ-cell specific genes and microRNAs. We recently reported the cloning and expression of bovine NOBOX during early embryonic development and our gene knockdown studies indicate that NOBOX is a maternal effect gene essential for early embryonic development. As NOBOX is a maternal transcript critical for development and NOBOX is depleted during early embryogenesis, we hypothesized that NOBOX is targeted by microRNAs for silencing and/or degradation.

Results

Using an algorithm "MicroInspector", a potential microRNA recognition element (MRE) for miR-196a was identified in the 3' UTR of the bovine NOBOX mRNA. Expression analysis of miR-196a in bovine oocytes and during early embryonic development indicated that it is expressed both in oocytes and embryos and tends to increase at the four-cell and eight-cell stages. Ectopic expression of NOBOX and miR-196a in HeLa cells inhibited the expression of NOBOX protein compared to the control cells without miR-196a. Similarly, the activity of a luciferase construct containing the entire 3' UTR of bovine NOBOX was suppressed, and the regulation was abolished by mutations in the miR-196a binding site indicating that the predicted MRE is critical for the direct and specific binding of miR-196a to the NOBOX mRNA. Furthermore, ectopic expression of miR-196a mimic in bovine early embryos significantly reduced the NOBOX expression at the both mRNA and protein levels.

Conclusion

Collectively, our results demonstrate that miR-196a is a bona fide negative regulator of NOBOX during bovine early embryogenesis.

【 授权许可】

   
2011 Tripurani et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150218074647990.pdf 510KB PDF download
Figure 5. 29KB Image download
Figure 4. 30KB Image download
Figure 3. 23KB Image download
Figure 2. 17KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schultz RM: The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 2002, 8(4):323-331.
  • [2]Li L, Zheng P, Dean J: Maternal control of early mouse development. Development 2010, 137(6):859-870.
  • [3]DeRenzo C, Seydoux G: A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 2004, 14(8):420-426.
  • [4]Telford NA, Watson AJ, Schultz GA: Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990, 26(1):90-100.
  • [5]Bachvarova R, De Leon V, Johnson A, Kaplan G, Paynton BV: Changes in total RNA, polyadenylated RNA, and actin mRNA during meiotic maturation of mouse oocytes. Dev Biol 1985, 108(2):325-331.
  • [6]Paynton BV, Rempel R, Bachvarova R: Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol 1988, 129(2):304-314.
  • [7]Sagata N, Watanabe N, Vande Woude GF, Ikawa Y: The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 1989, 342(6249):512-518.
  • [8]Alizadeh Z, Kageyama SI, Aoki F: Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev 2005, 72(3):281-290.
  • [9]Bettegowda A, Smith GW: Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Front Biosci 2007, 12:3713-3726.
  • [10]Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006, 312(5770):75-79.
  • [11]Bartel D: MicroRNAs:: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116(2):281-297.
  • [12]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [13]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-531.
  • [14]Wienholds E, Plasterk RHA: MicroRNA function in animal development. FEBS Lett 2005, 579(26):5911-5922.
  • [15]Carmell MA, Hannon GJ: RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 2004, 11(3):214-218.
  • [16]Jaskiewicz L, Filipowicz W: Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 2008, 320:77-97.
  • [17]Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ: Dicer is essential for mouse development. Nat Genet 2003, 35(3):215-217.
  • [18]Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Gene Dev 2005, 19(4):489-501.
  • [19]Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF: MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308(5723):833-838.
  • [20]Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA: Maternal microRNAs are essential for mouse zygotic development. Genes Dev 2007, 21(6):644-648.
  • [21]Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM: Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008, 22(10):2336-2352.
  • [22]Yekta S, Shih IH, Bartel DP: MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004, 304(5670):594-596.
  • [23]Qiu R, Liu Y, Wu JY, Liu K, Mo W, He R: Misexpression of miR-196a induces eye anomaly in Xenopus laevis. Brain Res Bull 2009, 79(1):26-31.
  • [24]Suzumori N, Yan C, Matzuk MM, Rajkovic A: Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev 2002, 111(1-2):137-141.
  • [25]Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM: NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004, 305(5687):1157-1159.
  • [26]Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, Rajkovic A: Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 2007, 77(2):312-319.
  • [27]Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A: NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet 2007, 81(3):576-581.
  • [28]Qin Y, Shi Y, Zhao Y, Carson SA, Simpson JL, Chen ZJ: Mutation analysis of NOBOX homeodomain in Chinese women with premature ovarian failure. Fertil Steril 2009, 91(4 Suppl):1507-1509.
  • [29]Tripurani SK, Lee KB, Wang L, Wee G, Smith GW, Lee YS, Latham KE, Yao J: A Novel Functional Role for the Oocyte-Specific Transcription Factor Newborn Ovary Homeobox (NOBOX) during Early Embryonic Development in Cattle. Endocrinology 2011, 152(3):1013-1023.
  • [30]Rajewsky N: microRNA target predictions in animals. Nat Genet 2006, 38(Suppl):S8-13.
  • [31]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [32]Rusinov V, Baev V, Minkov IN, Tabler M: MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 2005, (33 Web Server):W696-700.
  • [33]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol 2005, 3(3):e85.
  • [34]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 2003, 31(13):3406.
  • [35]Shen-Orr SS, Pilpel Y, Hunter CP: Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol 2010, 11(6):R58.
  • [36]Bentwich I: Prediction and validation of microRNAs and their targets. FEBS Lett 2005, 579(26):5904-5910.
  • [37]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-1414.
  • [38]Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE: Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 2009, 15(12):2351-2363.
  • [39]Krützfeldt J, Poy MN, Stoffel M: Strategies to determine the biological function of microRNAs. Nat Genet 2006, 38(Suppl):S14-19.
  • [40]Begemann G: MicroRNAs and RNA interference in zebrafish development. Zebrafish 2008, 5(2):111-119.
  • [41]Spruce T, Pernaute B, Di-Gregorio A, Cobb BS, Merkenschlager M, Manzanares M, Rodriguez TA: An early developmental role for miRNAs in the maintenance of extraembryonic stem cells in the mouse embryo. Dev Cell 2010, 19(2):207-219.
  • [42]Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005, 122(4):553-563.
  • [43]Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433(7027):769-773.
  • [44]Curtis D, Lehmann R, Zamore PD: Translational regulation in development. Cell 1995, 81(2):171-178.
  • [45]Amano: Mechanism of Translation in the period of oocyte to zygote trasition in mammals. JMammOva Res 2005, 1-11.
  • [46]Vasudevan S, Seli E, Steitz JA: Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Gene Dev 2006, 20(2):138-146.
  • [47]Sehm T, Sachse C, Frenzel C, Echeverri K: miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 2009, 334(2):468-480.
  • [48]Braig S, Mueller DW, Rothhammer T, Bosserhoff AK: MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci 2010, 67(20):3535-3548.
  • [49]Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, Andl CD, Seykora JT, Hannon GJ, Millar SE: The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 2006, 16(10):1041-1049.
  • [50]Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M, Gockel I: High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 2009, 15(17):2089-2096.
  • [51]Pandey P, Brors B, Srivastava PK, Bott A, Boehn SNE, Groene HJ, Gretz N: Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 2008, 9:624.
  • [52]Tripurani SK, Xiao C, Salem M, Yao J: Cloning and analysis of fetal ovary microRNAs in cattle. Anim Reprod Sci 2010, 120(1-4):16-22.
  • [53]Tejomurtula J, Lee KB, Tripurani SK, Smith GW, Yao J: Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle. Biol Reprod 2009, 81(2):333-342.
  • [54]Bettegowda A, Patel OV, Ireland JJ, Smith GW: Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol Reprod Dev 2006, 73(3):267-278.
  • [55]Bettegowda A, Yao J, Sen A, Li Q, Lee KB, Kobayashi Y, Patel OV, Coussens PM, Ireland JJ, Smith GW: JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle. Proc Natl Acad Sci USA 2007, 104(45):17602-17607.
  文献评价指标  
  下载次数:24次 浏览次数:22次