期刊论文详细信息
BMC Research Notes
Gateway-compatible tissue-specific vectors for plant transformation
Lucia C Strader1  Elizabeth M Frick1  Marta Michniewicz1 
[1] Department of Biology, Washington University, St. Louis 63130, MO, USA
关键词: Tissue-specific;    Gateway technology;    Cloning vectors;   
Others  :  1135506
DOI  :  10.1186/s13104-015-1010-6
 received in 2014-07-25, accepted in 2015-02-11,  发布年份 2015
PDF
【 摘 要 】

Background

Understanding regulation of developmental events has increasingly required the use of tissue-specific expression of diverse genes affecting plant growth and environmental responses.

Findings

To allow for cloning of presumptive promoters with tissue-specific activities, we created two plant expression vectors with multiple cloning sites upstream of a Gateway cassette for expression of either untagged or YFP-tagged genes of interest. For fast and easy tissue-specific expression of desired genes, we further developed an initial set of Gateway-compatible tissue-specific gene expression vectors that allow for the expression of YFP-tagged or untagged proteins driven by the ALCOHOL DEHYDROGENASE1, CHLOROPHYLL A/B BINDING PROTEIN 1, COBRA LIKE1, EXPANSIN7, LATERAL ORGAN BOUNDARIES-DOMAIN 16, SCARECROW, UBIQUITIN10, and WOODEN LEG upstream regulatory regions.

Conclusions

These vectors provide an invaluable resource to the plant community, allowing for rapid generation of a variety of tissue-specific expression constructs.

【 授权许可】

   
2015 Michniewicz et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150310024222404.pdf 996KB PDF download
Figure 2. 62KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Groß-Hardt R, Lenhard M, Laux T: WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 2002, 16:1129-38.
  • [2]An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, et al.: CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 2004, 131:3615-26.
  • [3]Warnasooriya SN, Montgomery BL: Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis. Plant Physiol 2009, 149:424-33.
  • [4]Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K: Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. Plant Biotechnol J 2007, 5:477-82.
  • [5]Baroux C, Blanvillain R, Betts H, Batoko H, Craft J, Martinez A, et al.: Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnol J 2005, 3:91-101.
  • [6]Brand L, Hörler M, Nüesch E, Vassalli S, Barrell P, Yang W, et al.: A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 2006, 141:1194-204.
  • [7]Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG: Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant Biol 2005, 5:9. BioMed Central Full Text
  • [8]Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, et al.: Development of enhancer trap lines for functional analysis of the rice genome. Plant J 2003, 35:418-27.
  • [9]Haseloff J: GFP variants for multispectral imaging of living cells. Methods Cell Biol 1999, 58:139-51.
  • [10]Maizel A, Weigel D: Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 2004, 38:164-71.
  • [11]Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R, Mizukami Y, et al.: The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 2003, 36:918-30.
  • [12]Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, et al.: Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 2006, 45(4):616-29.
  • [13]Odell JT, Nagy F, Chua NH: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985, 313:810-2.
  • [14]Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005, 139:5-17.
  • [15]Karlin-Neumann GA, Sun L, Tobin EM: Expression of light-harvesting chlorophyll a/b-protein genes is phytochrome-regulated in etiolated Arabidopsis thaliana seedlings. Plant Physiol 1988, 88:1323-31.
  • [16]Gao J, Kaufman LS: Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol 1994, 104:1251-7.
  • [17]Capel J, Jarillo JA, Madueño F, Jorquera MJ, Martinez-Zapater JM, Salinas J: Low temperature regulates Arabidopsis Lhcb gene expression in a light-independent manner. Plant J 1998, 13:411-8.
  • [18]Nagy F, Kay SA, Chua NH: A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 1988, 2:376-82.
  • [19]Millar AJ, Kay SA: Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 1991, 3:541-50.
  • [20]Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller II, et al.: Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 2010, 154:665-77.
  • [21]Koch KE: Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 1996, 47:509-40.
  • [22]Ha SB, An G: Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene. Proc Natl Acad Sci U S A 1988, 85:8017-21.
  • [23]Simpson J, VANM M, Herrera Estrella L: Photosynthesis-associated gene families: differences in response to tissue-specific and environmental factors. Science 1986, 233:34-8.
  • [24]Simpson J, Schell J, Van Montagu M, Herrera-Estrella L: Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 1986, 323:551-4.
  • [25]Chung HJ, Ferl RJ: Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol 1999, 121:429-36.
  • [26]Dolferus R, Jacobs M, Peacock WJ, Dennis ES: Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 1994, 105:1075-87.
  • [27]Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES: Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 1998, 149:479-90.
  • [28]de Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R: Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 1996, 111:381-91.
  • [29]Paul AL, Daugherty CJ, Bihn EA, Chapman DK, Norwood KL, Ferl RJ: Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis. Plant Physiol 2001, 126:613-21.
  • [30]Malamy JE, Benfey PN: Analysis of SCARECROW expression using a rapid system for assessing transgene expression in Arabidopsis roots. Plant J 1997, 12:957-63.
  • [31]Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, et al.: The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 1996, 86:423-33.
  • [32]Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN: Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 2000, 127(3):595-603.
  • [33]Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN: Combining expression and comparative evolutionary analysis. COBRA Gene Fam Plant Physiol 2007, 143(1):172-87.
  • [34]Cho HT, Cosgrove DJ: Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 2002, 14(12):3237-53.
  • [35]Laplaze L, Parizot B, Baker A, Ricaud L, Martinière A, Auguy F, et al.: GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 2005, 56:2433-42.
  • [36]Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, et al.: Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 2007, 19:3889-900.
  • [37]Shuai B, Reynaga-Pena CG, Springer PS: The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 2002, 129:747-61.
  • [38]Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y: A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 2000, 14(23):2938-43.
  • [39]Bonke M, Thitamadee S, Mähöonen AP, Hauser MT, Helariutta Y: APL regulates vascular tissue identity in Arabidopsis. Nature 2003, 426:181-6.
  • [40]Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC. Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3 (Bethesda). 2014, in press.
  • [41]Koncz C, Schell J: The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 1986, 204:383-96.
  • [42]Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16:735-43.
  • [43]Haughn GW, Somerville C: Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 1986, 204:430-4.
  文献评价指标  
  下载次数:25次 浏览次数:18次