期刊论文详细信息
BMC Cell Biology
The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions
Antonella Calogero1  Giuseppe Ragona1  Erino Angelo Rendina2  Mohsen Ibrahim2  Luca Pacini1  Paolo Rosa1  Daniela Bastianelli2  Donatella Ponti1 
[1] Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, Latina, 04100, Italy;Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy
关键词: Egr-1 −/− mice;    cancer;    nucleolus;    NPM1;    B23;    EGR1;   
Others  :  1234452
DOI  :  10.1186/s12860-015-0073-5
 received in 2015-04-10, accepted in 2015-11-12,  发布年份 2015
PDF
【 摘 要 】

Background

The nucleolus is a multi-domain enriched with proteins involved in ribosome biogenesis, cell cycle and apoptosis control, viral replication and differentiation of stem cells. Several authors have suggested a role for the nucleolus also in malignant transformation. We have recently demonstrated that under specific circumstances the transcriptional factor EGR1 is shuttled to the nucleolus where it functions as a negative regulator of RNA polymerase I. Since this activity is hampered in ARF −/− cells, and ARF transcription is regulated by EGR1 while the turnover of ARF protein is under the control of B23, we speculated that some sort of cooperation between EGR1 and B23 might also exist.

Results

In this work we identified a canonical EGR1 binding site on the B23 promoter through experiments of transactivation and in vitro DNA binding assay. We then found that the levels of B23 expression are directly correlated with those of EGR1, and that this correlation applies to several cellular types and to different stress conditions. Furthermore, we showed that EGR1 stability and accumulation within the nucleolus is in turn regulated by B23 through proteasome involvement, similarly to ARF turnover.

Conclusion

Our results highlight EGR1 as a regulator of B23 expression actively playing within the newly discovered nucleolar B23-ARF-EGR1 network.

【 授权许可】

   
2015 Ponti et al.

【 预 览 】
附件列表
Files Size Format View
20151130011410122.pdf 1688KB PDF download
Fig. 5. 66KB Image download
Fig. 4. 15KB Image download
Fig. 3. 43KB Image download
Fig. 2. 52KB Image download
Fig. 1. 44KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Withe RJ. RNA polymerase I and III growth control and cancer. Nat Rev Mol Cell Biol. 2005; 6:69-78.
  • [2]Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol. 2010; 50:131-56.
  • [3]Williamson D, Lu YJ, Fang C, Pritchard-Jones K, Shipley J. Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer. 2006; 45:839-845.
  • [4]Ciarmatori S, Scott PH, Sutcliffe JE, McLees A, Alzuherri HM et al.. Overlapping functions of the pRB family in the regulation of rRNA synthesis. Mol Cell Biol. 2001; 21:5806-5814.
  • [5]Zhai W, Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol. 2000; 20:5930-5938.
  • [6]Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A. 1998; 95:8292-7.
  • [7]Colombo E 2002 Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 2002;4(7):529–33.
  • [8]Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol. 2004;24:985–96.
  • [9]Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC, et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol. 2005;25:8874–86.
  • [10]Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 2004; 18:1862-74.
  • [11]Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. Identification of nucleophosmin/B23 a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 2001; 506:272-276.
  • [12]Wang W, Budhu A, Forgues M, Wang XW. Temporal and spatial control of nucleophosmin by the RanCrm1 complex in centrosome duplication. Nat Cell Biol. 2005; 7:823-830.
  • [13]Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in haematological diseases. Oncogene. 2011; 30:2595-2609.
  • [14]Colombo E. Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell Biol Nat Cell Biol. 2002; 4:529-33.
  • [15]Itahana K. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cel. 2003; 12:1151-64.
  • [16]Liu C, Yao J, de Belle I, Huang RP, Adamson E, Mercola D. The transcriptional factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor beta1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem. 1999; 274:4400-4411.
  • [17]Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcriptional factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53 and fibronectin. Cancer Gene Ther. 2006; 13:115-124.
  • [18]Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R, Soni T, Adamson ED, Mercola D. Early growth response I acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res. 2005; 65:5133-5143.
  • [19]Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol. 2001; 3:1124-1128.
  • [20]de Belle I, Huang RP, Fan Y, Liu C, Mercola D, Adamson ED. p53 and Egr1 additively suppress transformed growth in HT1080 cells but Egr1 counteracts p53-dependent apoptosis. Oncogene. 1999; 18:3633-3642.
  • [21]Huang RP, Fan Y, de Belle I, Niemeyer C, Gottardis MM, Mercola D, Adamson ED. Descreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int J Cancer. 1997; 72:102-109.
  • [22]Liu C, Yao J, de Belle I, Huang RP, Adamson E. The transcription factor EGR1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem. 1999; 274:4400-4411.
  • [23]Calogero A, Lombardi V, De Gregorio G, Porcellini A, Ucci S, Arcella A, Caruso R, Gagliardi FM, Gulino A, Lanzetta G, Frati L, Mercola D, Ragona G. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int. 2004; 4:1. BioMed Central Full Text
  • [24]Ponti D, Bellenchi GC, Puca R, Bastianelli D, Maroder M, Ragona G, Roussel P, Thiry M, Mercola D, Calogero A. The transcriptional factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis. PloS One. 2014; 9(5):e96037.
  • [25]Yu J, Zhang SS, Saito K, Williams S, Arimura Y et al.. PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J. 2009; 28:21-33.
  • [26]Sirri V, Roussel P, Hernandez-Verdun D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol. 2000; 148:259-270.
  • [27]Yao Z, Duan S, Hou D, Wang W, Wang G, Liu Y, Wen L, Wu M. B23 acts as a nucleolar stress sensor and promotes cell survival through its dynamic interaction with hnRNPU and hnRNPA1. Oncogene. 2010; 29:1821-1834.
  • [28]Snyder-Keller A, Chandra R, Lin Y, Mitchell ES. Basal EGR1 (zif268, NGFI-A, Krox-24) expression in developing striatal patches: role of dopamine and glutamate. Brain Res. 2002; 958:297-304.
  • [29]Lindstrom MS, Zhang Y. B23 and ARF Friends or Foes? Cell Biochem Biophys. 2006; 46:79-90.
  • [30]Dingwall C, Dilworth SM, Black SJ, Kearsey SE, Cox LS, Laskey RA. Nucleophosmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J. 1987; 6:69-74.
  • [31]Lindstrom MS. NPM/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodelling. Biochem Res Int. 2011; 2011:195209.
  • [32]Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol. 1991; 11:2567-2575.
  • [33]Li YP. Protein B23 is an important human factor for the nucleolar localization of the Human Immunodeficiency virus protein Tat. J Virol. 1997; 71:4098-4102.
  • [34]Valdez BC, Perlaky L, Henning D, Saijo PKC, Busch H. Identification of the nuclear and nucleolar localization signals of the protein p120: interaction with translocation protein B23. J Biol Chem. 1994; 269:23776-23783.
  • [35]Wu MH, Yung BY. UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem. 2002; 277:48234-482240.
  • [36]Paron I, D’Elia A, D’Ambrosio C, Scaloni A, D’Aurizio F, Prescott A, Damante G, Tell G. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J. 2004; 378:929-937.
  • [37]Lee SY, Park JH, Kim S, Park EJ, Yun Y, Kwon J. A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonuclearprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks. Biochem J. 2005; 388:7-15.
  • [38]Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z, Wu M, Zhan Q. B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem. 2005; 280:10988-10996.
  • [39]Takemura M, Sato K, Nishio M, Akiyama T, Umekawa H, Yoshida S. Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase α activity. J Biochem. 1999; 125:904-909.
  • [40]Meder VS, Boeglin M, de Murcia G, Schreiber V. PARP1 and PARP2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci. 2005; 118:211-222.
  • [41]Yung BY, Busch RK, Busch H, Mauger AB, Chan PK. Effects of actinomycin D analogs on nucleolar phosphoprotein B23 (37,000 daltons/pI 5.1). Biochem Pharmacol. 1985; 15:4059-4063.
  • [42]Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW, Quelle DE. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol. 2005; 25:1258-1271.
  • [43]Menna C, De Falco E, Pacini L, Scafetta G, Ruggieri P, Puca R, Petrozza V, Ciccone AM, Rendina EA, Calogero A, Ibrahim M. Axitinib affects cell viability and migration of primary fetal lung adenocarcinoma culture. Cancer Invest. 2014; 32:13-21.
  • [44]Pacini L, Suffredini S, Ponti D, Coppini R, Frati G, Ragona G, Cerbai E, Calogero A. Altered calcium regulation in isolated cardiomycytes from Egr-1 knock-out mice. Can J Physiol Pharmacol. 2013; 91:1135-1142.
  文献评价指标  
  下载次数:16次 浏览次数:15次