期刊论文详细信息
BMC Microbiology
The LexA regulated genes of the Clostridium difficile
Matej Butala3  Darja Žgur-Bertok3  Nejc Paulič3  Bruno Dupuy4  Gregor Anderluh5  Vesna Hodnik3  Maja Rupnik1  Beata M Walter2 
[1]Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
[2]Institute of Public Health Maribor, Centre for Microbiology, Maribor, Slovenia
[3]Biotechnical Faculty, University of Ljubljana, Department of Biology, Ljubljana, Slovenia
[4]Laboratoire Pathogenèse des Bactéries Anaérobies, Département de Microbiologie, Institut Pasteur, Paris, France
[5]National Institute of Chemistry, Ljubljana, Slovenia
关键词: LexA repressor;    Surface plasmon resonance;    SOS system;    Toxin regulation;    Antibiotic resistance;    Clostridium difficile;   
Others  :  1141445
DOI  :  10.1186/1471-2180-14-88
 received in 2013-12-23, accepted in 2014-03-27,  发布年份 2014
PDF
【 摘 要 】

Background

The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the in silico LexA regulon in Clostridium difficile, an important human pathogen.

Results

We grouped thirty C. difficile strains from different ribotypes and toxinotypes into three clusters according to lexA gene/protein variability. We applied in silico analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in C. difficile. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: lexA, recA, ruvCA and uvrBA, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance.

Conclusions

Results presented here suggest that in C. difficile LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our in vitro results indicate that in C. difficile inactivation of LexA repressor depends on repressor`s dissociation from the operators. We report that the repressor`s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in C. difficile.

【 授权许可】

   
2014 Walter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327051018992.pdf 1601KB PDF download
Figure 1. 30KB Image download
Figure 3. 111KB Image download
Figure 2. 105KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 1.

【 参考文献 】
  • [1]Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC: Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 2001, 158:41-64.
  • [2]Erill I, Campoy S, Barbe J: Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007, 31:637-656.
  • [3]Mazon G, Erill I, Campoy S, Cortes P, Forano E, Barbe J: Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology 2004, 150:3783-3795.
  • [4]Wade JT, Reppas NB, Church GM, Struhl K: Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 2005, 19:2619-2630.
  • [5]Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM: Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005, 187:7655-7666.
  • [6]Butala M, Sonjak S, Kamensek S, Hodoscek M, Browning DF, Zgur-Bertok D, Busby SJ: Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol Microbiol 2012, 86:129-139.
  • [7]Quinones M, Kimsey HH, Waldor MK: LexA cleavage is required for CTX prophage induction. Mol Cell 2005, 17:291-300.
  • [8]Da Re S, Garnier F, Guerin E, Campoy S, Denis F, Ploy MC: The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009, 10:929-933.
  • [9]Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbe J, Ploy MC, Mazel D: The SOS response controls integron recombination. Science 2009, 324:1034.
  • [10]Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JR: Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005, 56:836-844.
  • [11]Beaber JW, Hochhut B, Waldor MK: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427:72-74.
  • [12]Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD: Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J Bacteriol 2006, 188:5595-5605.
  • [13]Rupnik M, Wilcox MH, Gerding DN: Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009, 7:526-536.
  • [14]Gebhart D, Williams SR, Bishop-Lilly KA, Govoni GR, Willner KM, Butani A, Sozhamannan S, Martin D, Fortier LC, Scholl D: Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J Bacteriol 2012, 194:6240-6247.
  • [15]Johnston JL, Sloan J, Fyfe JA, Davies JK, Rood JI: The recA gene from Clostridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology 1997, 143(Pt 3):885-890.
  • [16]Nuyts S, Van Mellaert L, Barbe S, Lammertyn E, Theys J, Landuyt W, Bosmans E, Lambin P, Anne J: Insertion or deletion of the Cheo box modifies radiation inducibility of Clostridium promoters. Appl Environ Microbiol 2001, 67:4464-4470.
  • [17]Cornish JP, Matthews F, Thomas JR, Erill I: Inference of self-regulated transcriptional networks by comparative genomics. Evol Bioinform Online 2012, 8:449-461.
  • [18]Walker AS, Eyre DW, Wyllie DH, Dingle KE, Griffiths D, Shine B, Oakley S, O'Connor L, Finney J, Vaughan A, Crook DW, Wilcox MH, Peto TE: Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis 2013, 56:1589-1600.
  • [19]Rupnik M: Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 2008, 32:541-555.
  • [20]Marsden GL, Davis IJ, Wright VJ, Sebaihia M, Kuijper EJ, Minton NP: Array comparative hybridisation reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clostridium difficile. BMC Genomics 2010, 11:389. BioMed Central Full Text
  • [21]Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley TD, Sebaihia M, Quail MA, Rose G, Gerding DN, Gibert M, Popoff MR, Parkhill J, Dougan G, Wren BW: Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009, 10:R102. BioMed Central Full Text
  • [22]Stabler RA, Dawson LF, Valiente E, Cairns MD, Martin MJ, Donahue EH, Riley TV, Songer JG, Kuijper EJ, Dingle KE, Wren BW: Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS One 2012, 7:e31559.
  • [23]Knetsch CW, Hensgens MP, Harmanus C, van der Bijl MW, Savelkoul PH, Kuijper EJ, Corver J, Van Leeuwen HC: Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology 2011, 157:3113-3123.
  • [24]Erill I, O'Neill MC: A reexamination of information theory-based methods for DNA-binding site identification. BMC Bioinformatics 2009, 10:57. BioMed Central Full Text
  • [25]Butala M, Klose D, Hodnik V, Rems A, Podlesek Z, Klare JP, Anderluh G, Busby SJ, Steinhoff HJ, Zgur-Bertok D: Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response. Nucleic Acids Res 2011, 39:6546-6557.
  • [26]El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL: Characterization of the SigD Regulon of C. difficile and Its Positive Control of Toxin Production through the Regulation of tcdR. PLoS One 2013, 8:e83748.
  • [27]Aldape MJ, Packham AE, Nute DW, Bryant AE, Stevens DL: Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol 2013, 62:741-747.
  • [28]Butala M, Zgur-Bertok D, Busby SJ: The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009, 66:82-93.
  • [29]Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS, Grossman AD, Walker GC: Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2009, 191:1152-1161.
  • [30]Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH: The NCBI BioSystems database. Nucleic Acids Res 2010, 38:D492-496.
  • [31]Monot M, Boursaux-Eude C, Thibonnier M, Vallenet D, Moszer I, Medigue C, Martin-Verstraete I, Dupuy B: Reannotation of the genome sequence of Clostridium difficile strain 630. J Med Microbiol 2011, 60:1193-1199.
  • [32]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 2007, 8:460. BioMed Central Full Text
  • [33]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-208.
  • [34]Giese KC, Michalowski CB, Little JW: RecA-Dependent Cleavage of LexA Dimers. J Mol Biol 2008, 377:148-161.
  文献评价指标  
  下载次数:40次 浏览次数:22次