期刊论文详细信息
BMC Microbiology
atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples
Laurent Moulin1  Marcel A Behr3  Régis Moilleron4  Héberte Accrombessi1  Emmanuelle Cambau5  Frédéric J Veyrier2  Françoise S Lucas4  Adélaïde Roguet4  Nicolas Radomski3 
[1] Eau de Paris, Direction Recherche et Développement Qualité de l'Eau (DRDQE), 33 avenue Jean Jaurès, FR 94200, Ivry-sur-Seine, France;Département Infection et Epidémiologie, Infections Bactériennes Invasives, Institut Pasteur, 28 Rue du Dr. Roux, Paris, F 75015, France;Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal H3G 1A4, QC, Canada;Laboratoire Eau Environnement Systèmes Urbains (Leesu) UMR MA 102-AgroParisTech, Université Paris-Est, 6-8 avenue Blaise Pascal Cité, Descartes, FR 77455, Champs sur Marne, France;Laboratoire associé du Centre national de référence des mycobactéries et de la résistance aux antituberculeux, AP-HP, Groupe Hospitalier Saint Louis-Lariboisière, Université Paris Diderot EA3964, FR 75475, Paris, France
关键词: Environmental samples;    atpE gene;    Mycobacteria;   
Others  :  1142499
DOI  :  10.1186/1471-2180-13-277
 received in 2013-03-15, accepted in 2013-11-26,  发布年份 2013
PDF
【 摘 要 】

Background

The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets.

Results

Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples.

Conclusions

The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples.

【 授权许可】

   
2013 Radomski et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328072622700.pdf 1357KB PDF download
Figure 3. 45KB Image download
Figure 2. 77KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kazda J: The chronology of mycobacteria and the development of mycobacterial ecology. In The ecology of mycobacteria: Impact on animal’s and human’s health. Volume 1. Edited by Kazda J, Pavlik I, Falkinham JO, Hruska K. Dordrecht Heidelberg London New York: Springer; 2009::1-11.
  • [2]Radomski N, Cambau E, Moulin L, Haenn S, Moilleron R, Lucas FS: Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Appl Environ Microbiol 2010, 76(11):3514-3520.
  • [3]Adékambi T, Drancourt M: Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 2004, 54(6):2095-2105.
  • [4]Gomila M, Ramirez A, Lalucat J: Diversity of environmental Mycobacterium isolates from hemodialysis water as shown by a multigene sequencing approach. Appl Environ Microbiol 2007, 73(12):3787-3797.
  • [5]Mendum TA, Chilima BZ, Hirsch PR: The PCR amplification of non-tuberculous mycobacterial 16S rRNA sequences from soil. FEMS Microbiol Lett 2000, 185(2):189-192.
  • [6]Garcia-Quintanilla A, Gonzalez-Martin J, Tudo G, Espasa M, Jiménez de Anta MT: Simultaneous identification of Mycobacterium genus and Mycobacterium tuberculosis complex in clinical samples by 5′-exonuclease fluorogenic PCR. J Clin Microbiol 2002, 40(12):4646-4651.
  • [7]Nieminen T, Pakarinen J, Tsitko I, Salkinoja-Salonen M, Breitenstein A, Ali-Vehmas T, Neubauer P: 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J Microbiol Methods 2006, 67(1):44-55.
  • [8]Dutil S, Veillette M, Mériaux A, Lazure L, Barbeau J, Duchaine C: Aerosolization of mycobacteria and legionellae during dental treatment: Low exposure despite dental unit contamination. Environ Microbiol 2007, 9(11):2836-2843.
  • [9]Böddinghaus B, Rogall T, Flohr T, Blocker H, Bottger EC: Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 1990, 28(8):1751-1759.
  • [10]Zolg JW, Philippi-Schulz S: The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J Clin Microbiol 1994, 32(11):2801-2812.
  • [11]Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, Sattar SA: Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci Technol 2004, 50(1):83-90.
  • [12]Niva M, Hernesmaa A, Haahtela K, Salkinoja-Salonen M, Sivonen K, Haukka K: Actinobacteria communities of borel forest soil and lake water are rich in mycobacteria. Boreal Environ Res 2006, 11(1):45-53.
  • [13]Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D: Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 2005, 51(3):375-388.
  • [14]Uyttebroek M, Vermeir S, Wattiau P, Ryngaert A, Springael D: Characterization of cultures enriched from acidic Polycyclic Aromatic Hydrocarbon-contaminated soil for growth on pyrene at low pH. Appl Environ Microbiol 2007, 73(10):3159-3164.
  • [15]Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U, Ortega-Calvo JJ, Bastiaens L, Ryngaert A, Hausner M, et al.: Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environ Microbiol 2006, 8(5):836-847.
  • [16]Uyttebroek M, Spoden A, Ortega-Calvo JJ, Wouters K, Wattiau P, Bastiaens L, Springael D: Differential responses of Eubacterial, Mycobacterium, and Sphingomonas communities in Polycyclic Aromatic Hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile. J Environ Qual 2007, 36(1):1403-1411.
  • [17]Radomski N, Lucas FS, Moilleron R, Cambau E, Haenn S, Moulin L: Development of a real-time qPCR method for detection and enumeration of Mycobacterium spp. in surface water. Appl Environ Microbiol 2010, 76(11):7348-7351.
  • [18]Fukushima M, Kakinuma K, Hayashi H, Nagai H, Ito K, Kawaguchi R: Detection and identification of Mycobacterium species isolates by DNA microarray. J Clin Microbiol 2003, 41(6):2605-2615.
  • [19]Kim BJ, Hong SK, Lee KH, Yun YJ, Kim EC, Park YG, Bai GH, Kook YH: Differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria by duplex PCR assay using the RNA polymerase gene (rpoB). J Clin Microbiol 2004, 42(3):1308-1312.
  • [20]Tobler NE, Pfunder M, Herzog K, Frey JE, Altwegg M: Rapid detection and species identification of Mycobacterium spp. using real-time PCR and DNA-Microarray. J Microbiol Methods 2006, 66(1):116-124.
  • [21]Murray RGE, Brenner DJ, Bryant MP, Holt JG, Krieg NR, Mouldier JW, Pfennig N, Snearth PHA, Staley JT, Lapage SP, et al.: Bergey’s manual of systematic and bacteriology. Volume 2. 1st edition. Baltimore, USA: Williams and Wilkins; 1989.
  • [22]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, et al.: Deciphering the biology of Mycobacterium tuberculosis for the complete genome sequence. Nat Aust 1998, 44(6685):393-537.
  • [23]Nyrén P: The history of pyrosequencing. Methods Mol Biol 2007, 373(1):1-14.
  • [24]Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B, Herrmann JL, Daffé M, et al.: Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009, 4(6):1-12.
  • [25]Li L, Bannantine J, Zhang Q, Amonsin A, May B, Alt D, Banerji N, Kanjilal S, Kapur V: The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 2005, 102(35):12344-13349.
  • [26]Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PDR, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, et al.: Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2010, 18(1):729-741.
  • [27]Veyrier F, Pletzer D, Turenne C, Behr MA: Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evo Biol 2009, 196(8):1-14.
  • [28]Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V: Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 2002, 68(11):5318-5325.
  • [29]Radomski N, Betelli L, Moilleron R, Haenn S, Moulin L, Cambau E, Rocher V, Gonçalves A, Lucas FS: Mycobacterium behavior in wastewater treatment plant, a bacterial model distinct from Escherichia coli and enterococci. Environ Sci Technol 2011, 45(12):5380-5386.
  • [30]Cubillos-Ruiz A, Morales J, Zambrano MM: Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments. BMC Res Notes 2008, 7(1):110-120.
  • [31]Casas Botero AE, Torem ML, Souza de Mesquita LM: Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Mine Eng 2007, 20(10):1026-1032.
  • [32]Cocito C, Gilot P, Coene M, de Kesel M, Poupart P, Vannuffel P: Paratuberculosis. Clin Microbiol Rev 1994, 3(7):328-345.
  • [33]Gangadharam PRJ, Jenkins PA: Mycobacteria, basic acpects vol. 1. New York: International Thomson Publishing; 1998.
  • [34]Prescott LM, Harley JP, Klein DA, Bacq-Calberg CM, Dusart J: Les bactéries : Les Gram-positifs riches en G-C. In Microbiologie. Volume 1. Edited by Prescott J, Harley J, Klein D. Bruxelles: De Boeck Université; 2003::541.
  • [35]Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, et al.: The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 2003, 100(13):7877-7882.
  • [36]Goodfellow M, Williams ST: Ecology of actionomycetes. Annu Rev Microbiol 1983, 37:189-216.
  • [37]Rowbotham TJ, Cross T: Ecology of Rhodococcus coprophilus and associated Actinomycetes in fresh water and agriculturl habitats. Microbiol 1977, 100(2):231-240.
  • [38]Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK: Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis (Edinb) 2004, 84(3–4):256-262.
  • [39]Grogan DW, Cronan JE: Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 1997, 61(4):429-441.
  • [40]Butler WR, Ahearn DG, Kilburn JO: High-Performance Liquid Chromatography of mycolic acids as a tool in the identification of Corynebacterium, Nocardia, Rhodococcus, and Mycobacterium species. J Clin Microbiol 1986, 21(1):182-185.
  • [41]Thibert L, Lapierre S: Routine application of high-performance liquid chromatography for identification of mycobacteria. J Clin Microbiol 1993, 31(7):1759-1763.
  • [42]Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W: Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 2006, 50(8):2853-2856.
  • [43]Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs JM, Winkler H, van Gestel JV, Timmerman P, Zhu M, Lee E, et al.: A diarylquinolone drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005, 307(5707):223-227.
  • [44]Radomski N, Moilleron R, Lucas FS, Falkinham JO III: Challenges in environmental monitoring of pathogens: Case study in Mycobacterium avium. In Current research, technology and education topics in applied microbiology and microbial biotechnology. Volume 2. Edited by Méndez-Vilas A. Badajoz: Formatex Research Center; 2010::1551-1561.
  • [45]Fogel GB, Collins CR, Li J, Brunk CF: Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 1999, 38(2):93-113.
  • [46]Riesenfeld CS, Schloss PD, Handelsman J: Metagenomics: genome analysis of microbial communities. Annu Rev Genet 2004, 38(1):525-552.
  • [47]Rosamond J, Allsop A: Harnessing the power of the genome in the search for new antibiotics. Science 2000, 287(5460):1973-1976.
  • [48]Yao J, Lin H, Doddapaneni H, Civerolo EL: nWayComp: a genome-wide sequence comparison tool for multiple strains/species of phylogenetically related microorganisms. In Silico Biol 2007, 7(2):195-200.
  • [49]Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK: Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 1996, 178(5):1274-1282.
  • [50]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program fo windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41(1):95-98.
  • [51]R Development Core Team: R: a language and environment for statistical computing. Vienna, Austria; 2012. [R foundation for statistical computing] http://www.R-project.org webcite
  文献评价指标  
  下载次数:17次 浏览次数:9次