| BMC Evolutionary Biology | |
| Towards a model of postglacial biogeography in shallow marine species along the Patagonian Province: lessons from the limpet Nacella magellanica (Gmelin, 1791) | |
| Elie Poulin1  Tomoyuki Nakano3  Andrés Mansilla2  Juan I Cañete2  Mathias Hüne2  Claudio A González-Wevar1  | |
| [1] Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile;Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile;Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto Univeristy, 459 Shirahama, Nishimuro, Wakayama, 649-2211, Japan | |
| 关键词: Falkland/Malvinas Islands; Patagonian Province; Asymmetric gene flow; Larval dispersal; Nacella magellanica; Expansion-contraction model; Post-glacial recolonization; Last glacial maximum; Cape horn current; Quaternary; | |
| Others : 1140580 DOI : 10.1186/1471-2148-12-139 |
|
| received in 2012-04-26, accepted in 2012-07-25, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Patagonia extends for more than 84,000 km of irregular coasts is an area especially apt to evaluate how historic and contemporary processes influence the distribution and connectivity of shallow marine benthic organisms. The true limpet Nacella magellanica has a wide distribution in this province and represents a suitable model to infer the Quaternary glacial legacy on marine benthic organisms. This species inhabits ice-free rocky ecosystems, has a narrow bathymetric range and consequently should have been severely affected by recurrent glacial cycles during the Quaternary. We performed phylogeographic and demographic analyses of N. magellanica from 14 localities along its distribution in Pacific Patagonia, Atlantic Patagonia, and the Falkland/Malvinas Islands.
Results
Mitochondrial (COI) DNA analyses of 357 individuals of N. magellanica revealed an absence of genetic differentiation in the species with a single genetic unit along Pacific Patagonia. However, we detected significant genetic differences among three main groups named Pacific Patagonia, Atlantic Patagonia and Falkland/Malvinas Islands. Migration rate estimations indicated asymmetrical gene flow, primarily from Pacific Patagonia to Atlantic Patagonia (Nem=2.21) and the Falkland/Malvinas Islands (Nem=16.6). Demographic reconstruction in Pacific Patagonia suggests a recent recolonization process (< 10 ka) supported by neutrality tests, mismatch distribution and the median-joining haplotype genealogy.
Conclusions
Absence of genetic structure, a single dominant haplotype, lack of correlation between geographic and genetic distance, high estimated migration rates and the signal of recent demographic growth represent a large body of evidence supporting the hypothesis of rapid postglacial expansion in this species in Pacific Patagonia. This expansion could have been sustained by larval dispersal following the main current system in this area. Lower levels of genetic diversity in inland sea areas suggest that fjords and channels represent the areas most recently colonized by the species. Hence recolonization seems to follow a west to east direction to areas that were progressively deglaciated. Significant genetic differences among Pacific, Atlantic and Falkland/Malvinas Islands populations may be also explained through disparities in their respective glaciological and geological histories. The Falkland/Malvinas Islands, more than representing a glacial refugium for the species, seems to constitute a sink area considering the strong asymmetric gene flow detected from Pacific to Atlantic sectors. These results suggest that historical and contemporary processes represent the main factors shaping the modern biogeography of most shallow marine benthic invertebrates inhabiting the Patagonian Province.
【 授权许可】
2012 González-Wevar et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325044622568.pdf | 1802KB | ||
| Figure 5. | 16KB | Image | |
| Figure 4. | 95KB | Image | |
| Figure 3. | 91KB | Image | |
| Figure 2. | 52KB | Image | |
| Figure 1. | 65KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Clark J, Fastie C, Hurtt G, Jackson S, Johnson C, King G, Lewis M, Lynch J, Pacala S, Prentice C, Schupp E, Webb T III, Wyckoff P: Reid's paradox of rapid plant migration: Dispersal theory and interpretation of paleoecological records. Bioscience 1998, 48:13-24.
- [2]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405:907-913.
- [3]Marko P, Hoffman J, Emme S, McGovern T, Keever C, Cox N: The “Expansion-Contraction” model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 2010, 19:146-169.
- [4]Bennett K, Tzedakis P, Willis K: Quaternary refugia of North European trees. J Biogeogr 1991, 18:103-115.
- [5]Webb T III, Bartlein P: Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Evol Syst 1992, 23:141-173.
- [6]Hewitt G: Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions: Biological Sciences 2004, 359:183-195.
- [7]Provan J, Bennett K: Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution 2008, 23:564-571.
- [8]Williams J, Summers R, Webb T III: Applying plant functional types to construct biome maps from eastern North American pollen data. Quat Sci Rev 1998, 17:607-627.
- [9]Hewitt G: Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc 1996, 58:247-276.
- [10]Lessa E, Cook J, Patton J: Genetic footprints of demographic expansion in North America, but not Amazonia, during the late Quaternary. Proceedings of the National Academy of Science, USA 2003, 100:10331-10334.
- [11]Lessa E, D'Elía G, Pardiñas U: Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 2010, 19:3031-3037.
- [12]Beheregaray L: Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 2008, 17:3754-3774.
- [13]Ruzzante D, Walde S, Cussac V, Dalebout M, Seibert J, Ortubay S, Habit E: Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 2006, 15:2949-2968.
- [14]Ruzzante D, Walde S, Gosse J, Cussac V, Habit E, Zemlak T, Adams E: Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography. Mol Ecol 2008, 17:2234-2244.
- [15]Fraser C, Thiel M, Spencer H, Waters J: Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 2010, 10:203. BioMed Central Full Text
- [16]Zemlak T, Habit E, Walde S, Carrea C, Ruzzante D: Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus. BMC Evol Biol 2010, 10:67. BioMed Central Full Text
- [17]González-Wevar CA, Nakano T, Cañete JI, Poulin E: Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Mol Ecol 2011, 20:1936-1951.
- [18]Sérsic A, Cosacov A, Cocucci A, Johnson L, Pozner R, Avila L, Sites J Jr, Morando M: Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 2011, 103:475-494.
- [19]Ceballos SG, Lessa EP, Victorio MF, Fernández DA: Phylogeography of the sub-Antarctic notothenioid fish Eleginops maclovinus: evidence of population expansion. Mar Biol 2012, 159:499-505.
- [20]Palma R, Boric-Bargetto D, Torres-Pérez F, Hernández C, Yates T: Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS One 2012, 7:e32206.
- [21]Clapperton C: Quaternary Geology and Geomorphology of South America. Elsevier Amsterdam, NL: Elsevier Science; 1993:796.
- [22]McCulloch R, Bentley M, Purves R, Hulton N, Sugden D, Clapperton C: Climatic inferences from glacial and paleoecological evidence at the last glacial termination, southern South America. J Quat Sci 2000, 15:409-417.
- [23]Hulton N, Purves P, McCulloch R, Sugden D, Bentley M: The last glacial maximum and deglaciation in southern South America. Quat Sci Rev 2002, 21:233-241.
- [24]RABASSA J: Late Cenozoic glaciation in Patagonia and Tierra del Fuego. Developments in Quaternary Sciences 2008, 11:151-205.
- [25]Kim I, Phillips C, Monjeau J, Birney E, Noack K, Pumo D, Sikes R, Dole J: Habitat islands, genetic diversity, and gene flow in a Patagonian rodent. Mol Ecol 1998, 7:667-678.
- [26]Smith M, Kelt D, Patton J: Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol Ecol 2001, 10:397-405.
- [27]Cussac V, Ortubay S, Iglesias G, Milano D, Lattuca M, Barriga J, Battini M, Gross M: The distribution of South American galaxiid fishes: the role of biological traits and post-glacial history. J Biogeogr 2003, 31:103-121.
- [28]Zemlak T, Habit E, Walde S, Battini M, Adams E, Ruzzante D: Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia. Mol Ecol 2008, 17:5049-5061.
- [29]Victoriano P, Ortiz J, Benavides E, Adams B, Sites J Jr: Comparative phylogeography of codistributed species of Chilean Liolaemus (Squamata: Tropiduridae) from the central-southern Andean range. Mol Ecol 2008, 17:2397-2416.
- [30]Breitman M, Avila L, Sites J Jr, Morando M: Lizards from the end of the world: Phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini). Molecular Phylogenetics and Evolution 2011, 59:364-376.
- [31]Vidal M, Moreno P, Poulin E: Genetic diversity and insular colonization of Liolaemus pictus (Squamata, Liolaeminae) in north-western Patagonia. Austral Ecology 2011, 37:67-77.
- [32]Nuñez J, Wood N, Rabanal F, Fontanella F, Sites J Jr: Amphibian phylogeography in the Antipodes: Refugia and postglacial colonization explain mitochondrial haplotype distribution in the Patagonian frog Eupsophus calcaratus (Cycloramphidae). Molecular Phylogenetics and Evolution 2011, 58:343-352.
- [33]Himes C, Gallardo M, Kenagy G: Historical biogeography and post-glacial recolonization of South American temperate rain forest by the relictual marsupial Dromiciops gliroides. J Biogeogr 2008, 35:1415-1424.
- [34]Marín J, Spotorno A, González B, Bonacic C, Wheeler J, Casey C, Bruford M, Palma R, Poulin E: Mitochondrial DNA variation and systematics of the guanaco (Lama guanicoe, Artiodactyla: Camelidae). J Mammal 2008, 89:1-13.
- [35]Ufj P, Teta P, D'Elía G, Lessa E: The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol J Linn Soc 2011, 103:495-513.
- [36]Jakob S, Martinez-Meyer E, Blattner F: Phylogeographic analyses and paleodistribution modeling indicate Pleistocene In Situ survival of Hordeum species (Poaceae) in Southern Patagonia without genetic or spatial restriction. Mol Biol Evol 2009, 26:907-923.
- [37]Cárdenas L, Castilla J, Viard F: A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J Biogeogr 2009, 36:969-981.
- [38]Macaya E, Zuccarello G: Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 2010, 420:103-112.
- [39]Sánchez R, Sepúlveda R, Brante A, Cárdenas L: Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar Ecol Prog Ser 2011, 434:121-131.
- [40]Powell A: The Patellid limpets of the World (Patellidae). In Indo-Pacific Mollusca. Abbot. 3rd edition. Greenville: The Department of Mollusks; 1973:75-206.
- [41]Gúzman L: Patrón de distribución espacial y densidad de Nacella magellanica (Gmelin, 1791) en el intermareal del Estrecho de Magallanes (Mollusca, Gastropoda). Anales del Instituto de la Patagonia 1978, 9:205-219.
- [42]Ríos C, Mutschke E: Community structure of intertidal boulder-cobble fields in the Straits of Magellan, Chile*. Sci Mar 1999, 63:193-201.
- [43]Valdovinos C, Rüth M: Nacellidae limpets of southern South America: taxonomy and distribution. Rev Chil Hist Nat 2005, 78:497-517.
- [44]Bazterrica M, Silliman B, Hidalgo F, Crain C, Bertness M: Limpet grazing on a physically stressful Patagonian rocky shore. J Exp Mar Biol Ecol 2007, 353:22-34.
- [45]González-Wevar C, Nakano T, Cañete J, Poulin E: Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Molecular Phylogenetics and Evolution 2010, 56:115-124.
- [46]De Aranzamendi M, Gardenal C, Martin J, Bastida R: Limpets of the genus Nacella (Patellogastropoda) from the Southwestern Atlantic: species identification based on molecular data. Journal of Molluscan Studies 2009, 75:241-251.
- [47]Morriconi E: Reproductive biology of the limpet Nacella (P.) deaurata (Gmelin, 1791) in Bahía Lapataia (Beagle Channel). Sci Mar 1999, 63:417-426.
- [48]Adami M, Gordillo S: Structure and dynamics of the biota associated with Macrocystis pyrifera (Phaeophyta) from the Beagle Channel, Tierra del Fuego. Sci Mar 1999, 63:183-191.
- [49]De Aranzamendi M, Bastidas R, Gardenal C: Different evolutionary histories in two sympatric limpets of the genus Nacella (Patellogastropoda) in the South-western Atlantic coast. Mar Biol 2011, 158:2405-2418.
- [50]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 2007, 24:1596-1599.
- [51]González-Wevar CA, David B, Poulin E: Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep-Sea Res II Top Stud Oceanogr 2011, 58:220-229.
- [52]Hammer O, Harper D, Ryan P: PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 2001, 4:1-9.
- [53]Posada D, Crandall K: Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 2001, 16:37-45.
- [54]Ho S, Phillips M, Cooper A, Drummond A: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005, 22:1561-1568.
- [55]Ho S, Larson G: Molecular clocks: when times are a-changin'. Trends in Genetics 2006, 22:79-83.
- [56]Ho S, Shapiro B, Phillips M, Cooper A, Drummond A: Evidence for time dependency of molecular rates. Syst Biol 2007, 56:515-522.
- [57]Ho S, Lanfear R, Bromham L, Phillips M, Soubrier J, Rodrigo A, Cooper A: Time-dependent rates of molecular evolution. Mol Ecol 2011, 20:3087-3101.
- [58]Burridge C, Craw D, Fletcher D, Waters J: Geological dates and molecular rates: fish DNA sheds light on time dependency. Mol Biol Evol 2008, 25:624-633.
- [59]McCarty J: Ecological consequences of recent climate change. Conserv Biol 2001, 15:320-331.
- [60]Davis M, Shaw R, Etterson J: Evolutionary responses to climate change. Ecology 2005, 86:1704-1714.
- [61]Parmesan C: Ecological and evolutionary responses to recent climate change. The Annual Reviews of Ecology, Evolution, and Systematics 2006, 37:1-35.
- [62]Marshall J, Blair J, Peters D, Okin G, Rango A, Williams M: Predicting and understanding ecosystem responses to climate change at continental scales. Front Ecol Environ 2008, 6:273-280.
- [63]Guisan A, Thuiller W: Predicting species distribution: offering more than simple habitat models. Ecol Lett 2005, 8:993-1009.
- [64]Lesbarrères D: Post-glacial phylogeography: New insight into an old story: the post-glacial recolonization of European biota. Heredity 2008, 102:213-213.
- [65]Huntley B: How plants respond to climate change: migration rates, individualism and the consequences for the plant communities. Ann Bot 1991, 67:15-22.
- [66]Davis M, Shaw R: Range shifts and adaptive responses to Quaternary climate change. Science 2001, 292:673-679.
- [67]Hughes L: Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 2000, 15:56-61.
- [68]Lima F, Ribeiro P, Queiroz N, Hawkins S, Santos A: Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Chang Biol 2007, 13:2592-2604.
- [69]Pearson R, Dawson T: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 2003, 12:361-371.
- [70]Marko P: 'What‘s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 2004, 13:597-611.
- [71]Maggs C, Castihlo R, Foltz D, Henzler C, Jolly M, Kelly J, Olsen J, Perez K, Stam W, Vainöla R, Viard F, Wares J: Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 2008, 89:S108-S122.
- [72]Nakano T, Ozawa T: Systematic revision of Patelloida pygmaea (Dunker, 1860) (Gastropoda: Lottiidae), with a description of a new species. Journal of Molluscan Studies 2005, 71:357-370.
- [73]Bird C, Holland B, Bowen B, Toonen R: Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories. Mol Ecol 2007, 16:3173-3186.
- [74]Sá-Pinto A, Branco M, Sayanda D, Alexandrino P: Patterns of colonization, evolution and gene flow in species of the genus Patella in the Macaronesian Islands. Mol Ecol 2007, 17:519-532.
- [75]Clarke A, Crame J: Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society B: Biological Sciences 2010, 365:3655-3666.
- [76]Camus P: Biogeografía marina de Chile continental. Rev Chil Hist Nat 2001, 74:587-617.
- [77]Silva N, Palma S: The CIMAR Program in the austral Chilean channels and fjords. In Progress in the. Edited by Silva N, Palma S. Comité Oceanográfico Nacional; 2012:11-15.
- [78]Miloslavich P, Klein E, Díaz J, Hernández C, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh P, Neill P, Carranza A, Retana M, Díaz de Astarloa J, Lewis M, Yorio P, Piriz M, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A: Marine Biodiversity in the Atlantic and Pacific Coasts of South America: Knowledge and Gaps. PLoS One 2011, 6:e14631.
- [79]Pantoja S, Iriarte J, Daneri G: Oceanography of the Chilean Patagonia. Cont Shelf Res 2011, 31:149-153.
- [80]Rozzi R, Armesto J, Gutiérrez F, Linkens G, Anderson C, Poole A, Moses K, Hargrove E, Mansilla A, Kennedy J, Wilson M, Jax K, Jones C, Callicott J, Arroyo M: Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. Bioscience 2012, 62:226-236.
- [81]Ayre D, Minchinton T, PERRIN C: Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 2009, 18:1887-1903.
- [82]Paulay G, Meyer C: Dispersal and divergence across the greatest ocean region: Do larvae matter? Integr Comp Biol 2006, 46:269-281.
- [83]Bowden D, Clarke A, Peck L, Barnes D: Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years. Mar Ecol Prog Ser 2006, 316:1-16.
- [84]Bowden D, Clarke A, Peck L: Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates. Mar Biol 2009, 156:2033-2047.
- [85]Green B, Fisher R: Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Biol Ecol 2004, 299:115-132.
- [86]O'Connor M, Bruno J, Gaines S, Halpern B, Lester S, Kinlan B, Weiss J: Temperature control larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Science, USA 2007, 104:1266-1271.
- [87]Gúzman L, Ríos C: Age and growth of the Subantarctic limpet Nacella (Patinigera) magellanica magellanica (Gmelin,1791) from the Strait of Magellan, Chile. Veliger 1987, 30:159-166.
- [88]Ríos C, Mutschke E, Morrison E: Biodiversidad bentónica sublitoral en el estrecho de Magallanes, Chile. Rev Biol Mar Oceanogr 2003, 38:1-12.
- [89]Bertness M, Crain C, Silliman B, Bazterrica M, Reyna M, Hidalgo F, Farina J: The community structure of western Atlantic Patagonian rocky shores. Ecol Monogr 2006, 76:439-460.
- [90]Slatkin M, Hudson R: Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991, 129:555-562.
- [91]Rogers A, Harpending H: Population growth makes waves. Mol Biol Evol 1992, 9:552-569.
- [92]Hickerson M, Ross J: Post-glacial population history and genetic structure of the northern clingfish (Gobbiesox meandricus), revealed from mtDNA analysis. Mar Biol 2001, 138:1-13.
- [93]Flight P, O'Brien M, Schmidt P, Rand D: Genetic Structure and the North American Postglacial Expansion of the Barnacle, Semibalanus balanoides. J Hered 2012, 103:153-165.
- [94]Toro J, Ojeda J, Vergara A: The genetic structure of Mytilus chilensis (Hupe 1854) populations along the Chilean coast based on RAPDs analysis. Aquac Res 2004, 35:1466-1471.
- [95]Nuñez J, González M, Pérez-Losada M: Testing species boundaries between Atlantic and Pacific lineages of the Patagonian rockfish Sebastes oculatus (Teleostei: Scorpaenidae) through mitochondrial DNA sequences. Rev Biol Mar Oceanogr 2010, 45:565-573.
- [96]Hein A, Hulton N, Dunai T, Sugden D, Kaplan M, Xu S: The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat Sci Rev 2010, 29:1212-1227.
- [97]Heusser C, Heusser L, Lowell T: Paleoecology of the Southern chilean lake district-Isla Grande de Chiloe during the Middle-Late Llanquihue glaciation and deglaciation. Geografiska Annaler. Series A, Physical Geography 1999, 81:231-284.
- [98]Moreno P, Lowell T, Jacobson G Jr, Denton G: Abrupt vegetation and climate changes during the last termination in the Chilean lake district: a case study from Canal de la Puntilla (41 S). Geogr Ann 1999, 81:285-311.
- [99]Moreno P, León A: Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America. J Quat Sci 2003, 18:787-800.
- [100]McCulloch R, Fogwill C, Sugden D, Bentley M, Kubik P: Chronology of the last glaciation in Central Strait of Magellan and Bahía Inútil, Southernmost South America. Geogr Ann 2005, 87:1-24.
- [101]Heusser C: Deglacial paleoclimate of the Americansector of the Southern Ocean: Late Glacial–Holocene records from the latitude of Canal Beagle (55°S), Argentine Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 1998, 141:277-301.
- [102]De Pol-Holz R, Ulloa O, Dezileau L, Kaiser J, Lamy F, Hebbeln D: Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific. Geophys Res Lett 2006, 33:L04704.
- [103]Gordillo S, Coronato A, Rabassa J: Quaternary molluscan faunas from the islands of Tierra del Fuego after the Last Glacial Maximum. Sci Mar 2005, 69:337-348.
- [104]Gordillo S, Rabassa J, Coronato A: Paleoecology and paleobiogeographic pattern of mid-Holocene mollusks from the Beagle Channel (southern Tierra del Fuego, Argentina). Revista Geológica de Chile 2008, 35:321-333.
- [105]Cárdenas J, Gordillo S: Paleoenvironmental interpretation of late Quaternary molluscan assemblages from southern South America: A taphonomic comparison between the Strait of Magellan and the Beagle Channel. Andean Geology 2009, 36:81-93.
- [106]Rabassa J, Coronato A, Salemme M: Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Science 2005, 20:81-103.
- [107]Rabassa J, Coronato A, Martínez O: Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol J Linn Soc 2011, 103:316-335.
- [108]Clapperton C, Sugden D: The Maximum extent of glaciers in part of west Falkland. J Glaciol 1976, 17:73-77.
- [109]Ramos-Onsins SE, Rozas J: Statistical properties of new neutrality tests against population growth. Mol Biol Evol 2002, 19:2092-2100.
- [110]Bastida R, Roux A, Martínez D: Benthic communities of the Argentine continental shelf. Oceanol Acta 1992, 15:687-698.
- [111]Aguirre M, Hlebzsebitch J, Delatorre F: Late Cenozoic Invertebrate Paleontology, with emphasis on Mollusks. In Development in Quaternary Science 11, The Late Cenozoic of Patagonia and Tierra del Fuego. 1st edition. Edited by Rabassa J. Elsevier; 2008:285-326.
- [112]Aguirre M, Richiano S, Sirch Y: Palaeoenvironments and palaeoclimates of the Quaternary molluscan faunas from the coastal area of Bahía Vera-Camarones (Chubut, Patagonia). Palaeogeogr Palaeoclimatol Palaeoecol 2006, 229:251-286.
- [113]Hinojosa I, Pizarro M, Ramos M, Thiel M: Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estuarine Coastal Shelf Sci 2010, 87:367-377.
- [114]Acha E, Mianzan H, Guerrero R, Favero M, Bava J: Marine fronts at the continental shelves of austral South America. J Mar Syst 2004, 44:83-105.
- [115]Alemany D, Acha E, Iribarne O: The relationship between marine fronts and fish diversity in the Patagonian Shelf Large Marine Ecosystem. J Biogeogr 2009, 36:2111-2124.
- [116]Pardo-Gandarillas M: Aproximaciones filogeográficas para evaluar patrones de conectividad y de historia demográfica en dos especies de pulpos, habitantes de distintas provincias biogeográficas de Sudamérica. Ph.D Thesis. Universidad de Chile: Ecology Department; 2012.
- [117]Real L, Julio N, Gardenal N, Ciocco N: Genetic variability of Tehuelche scallop, Aequipecten tehuelchus, populations from the Patagonian coasts (Argentina). J Mar Biol Assoc UK 2004, 84:235-238.
- [118]Morrone JI: Island evolutionary biogeography: analysis of the weevils (Coleoptera: Curculinodae) of the Falkland Islands (Islas Malvinas). J Biogeogr 2011, 38:2078-2090.
- [119]Papadopoulou A, Jones AG, Hammond PM, Vogler AP: DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Molecular Phylogenetics and Evolution 2009, 53:935-947.
- [120]Pöhlmann K, Held C: Isolation and characterization of eight polymorphic microsatellite markers from South American limpets of the Nacella species complex. Conservation Genetic Resources 2011, 3:673-676.
- [121]Aljanabi S, Martinez I: Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 1997, 25:4692-4693.
- [122]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994, 3:294-299.
- [123]Filatov D: PROSEQ: A software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2002, 2:621-624.
- [124]Thomson J, Higgins D, Gibson T: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
- [125]Kumar S, Nei M, Dudley J, Tamura K: MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 2008, 9:299-306.
- [126]Roe A, Sperling F: Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylogenetics and Evolution 2007, 44:325-345.
- [127]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
- [128]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:37-50.
- [129]Pons O, Chaouche K: Estimation, variance and optimal sampling of gene diversity II. Diploid locus. Theoretical and Applied Genetics 1995, 91:122-130.
- [130]Pons O, Petit R: Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 1996, 144:1237-1245.
- [131]Burban C, Petit R, Carcreef E, Jactel H: Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 1999, 8:1593-1602.
- [132]Dupanloup I, Schneider S, Excoffier L: A simulated annealing approach to define the genetic structure of population. Mol Ecol 2002, 11:2571-2581.
- [133]Kuhner M: LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 2006, 22:768-770.
- [134]Bandelt H, Forster P, Röhl A: Median-Joining Networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
- [135]Schneider S, Excoffier L: Estimation of past demographic parameters from a distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 1999, 152:1879-1889.
- [136]Drummond A, Rambaut A: BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
- [137]Ho S, Shapiro B: Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 2011, 11:423-434.
- [138]Drummond A, Suchard M, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
PDF