期刊论文详细信息
BMC Systems Biology
Logical-continuous modelling of post-translationally regulated bistability of curli fiber expression in Escherichia coli
Max von Kleist2  Regine Hengge1  Heike Siebert2  Christof Schütte2  Adam Streck2  Kaveh Pouran Yousef2 
[1] Faculty of Biology/Microbiology, Humboldt Universität zu Berlin, Chausseestraße 117, Berlin 10115, Germany;Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, Berlin 14195, Germany
关键词: Escherichia coli;    C-di-GMP;    Biofilm;    Phenotypic heterogeneity;    Bistability;    Stochastic modelling;    Logical modelling;   
Others  :  1230651
DOI  :  10.1186/s12918-015-0183-x
 received in 2014-12-09, accepted in 2015-06-29,  发布年份 2015
【 摘 要 】

Background

Bacteria have developed a repertoire of signalling mechanisms that enable adaptive responses to fluctuating environmental conditions. The formation of biofilm, for example, allows persisting in times of external stresses, e.g. induced by antibiotics or a lack of nutrients. Adhesive curli fibers, the major extracellular matrix components in Escherichia coli biofilms, exhibit heterogeneous expression in isogenic cells exposed to identical external conditions. The dynamical mechanisms underlying this heterogeneity remain poorly understood. In this work, we elucidate the potential role of post-translational bistability as a source for this heterogeneity.

Results

We introduce a structured modelling workflow combining logical network topology analysis with time-continuous deterministic and stochastic modelling. The aim is to evaluate the topological structure of the underlying signalling network and to identify and analyse model parameterisations that satisfy observations from a set of genetic knockout experiments. Our work supports the hypothesis that the phenotypic heterogeneity of curli expression in biofilm cells is induced by bistable regulation at the post-translational level. Stochastic modelling suggests diverse noise-induced switching behaviours between the stable states, depending on the expression levels of the c-di-GMP-producing (diguanylate cyclases, DGCs) and -degrading (phosphodiesterases, PDEs) enzymes and reveals the quantitative difference in stable c-di-GMP levels between distinct phenotypes. The most dominant type of behaviour is characterised by a fast switching from curli-off to curli-on with a slow switching in the reverse direction and the second most dominant type is a long-term differentiation into curli-on or curli-off cells. This behaviour may implicate an intrinsic feature of the system allowing for a fast adaptive response (curli-on) versus a slow transition to the curli-off state, in line with experimental observations.

Conclusion

The combination of logical and continuous modelling enables a thorough analysis of different determinants of bistable regulation, i.e. network topology and biochemical kinetics, and allows for an incorporation of experimental data from heterogeneous sources. Our approach yields a mechanistic explanation for the phenotypic heterogeneity of curli fiber expression. Furthermore, the presented work provides a detailed insight into the interactions between the multiple DGC- and PDE-type enzymes and the role of c-di-GMP in dynamical regulation of cellular decisions.

【 授权许可】

   
2015 Pouran Yousef et al.

附件列表
Files Size Format View
Fig. 7. 59KB Image download
Fig. 6. 24KB Image download
Fig. 5. 38KB Image download
Fig. 4. 37KB Image download
Fig. 3. 66KB Image download
Fig. 2. 19KB Image download
Fig. 1. 81KB Image download
Fig. 7. 59KB Image download
Fig. 6. 24KB Image download
Fig. 5. 38KB Image download
Fig. 4. 37KB Image download
Fig. 3. 66KB Image download
Fig. 2. 19KB Image download
Fig. 1. 81KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Guo MS, Gross CA: Stress-induced remodeling of the bacterial proteome. Curr. Biol. 2014, 24(10):424-34.
  • [2]Martínez JL, Rojo F: Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev 2011, 35(5):768-89.
  • [3]Cornforth DM, Foster KR: Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 2013, 11(4):285-93.
  • [4]Arnoldini M, Vizcarra IA, Peña-Miller R, Stocker N, Diard M, Vogel V, Beardmore RE, Hardt WD, Ackermann M: Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol 2014, 12(8):1001928.
  • [5]Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T: The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 2013, 342(6162):1237435.
  • [6]Smits WKK, Kuipers OP, Veening J-WW: Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 2006, 4(4):259-71.
  • [7]Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R: The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. The EMBO journal 2013, 32(14):2001-014.
  • [8]Pesavento P, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R: Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes & Development 2008, 22:2434-446.
  • [9]Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R: Cyclic-di-GMP-mediated signalling within the σ S network of Escherichia coli. Mol Microbiol 2006, 62(4):1014-1034.
  • [10]Grantcharova N, Peters V, Monteiro C, Zakikhany K, Römling U: Bistable expression of CsgD in biofilm development of Salmonella enterica Serovar Typhimurium. J Bacteriol 2010, 192(2):456-66.
  • [11]Serra DO, Richter AM, Klauck G, Mika F, Hengge R: Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 2013, 4(2):e100103-13.
  • [12]Klarner H, Siebert H, Bockmayr A: Time series dependent analysis of unparametrized Thomas networks. IEEE/ACM Trans Comput Biol Bioinformatics 2012, 9(5):1338-1351.
  • [13]Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus U-UU, Weismantel R, Gilles ED, Klamt S, Schraven B: A logical model provides insights into T cell receptor signaling. PLoS Comp Biol 2007, 3(8):163.
  • [14]Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA: Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49(15):3216-224.
  • [15]Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol; 6(3):1000702.
  • [16]Mbodj A, Junion G, Brun C, Furlong EEM, Thieffry D: Logical modelling of drosophila signalling pathways. Mol BioSyst 2013, 9:2248-258.
  • [17]Stigler B, Veliz-Cuba A: Boolean models can explain bistability in the lac operon. J. Comput. Biol 2011, 18(6):783-94.
  • [18]Thattai M: Using topology to tame the complex biochemistry of genetic networks. Philos Trans R Soc A: Math Phys Eng Sci 2013, 371(1984):20110548.
  • [19]Tiwari A, Narula J, Igoshin OA: Ray: Bistable responses in bacterial genetic networks: Designs and dynamical consequences. Math Biosci 2011, 231(1):76-89.
  • [20]Shinar G, Feinberg M: Concordant chemical reaction networks. Math Biosci 2012, 240(2):92-113.
  • [21]Amin M, Porter SL, Soyer OS: Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks. PLoS Comput Biol 2013, 9(3):1002949.
  • [22]Eissing T, Waldherr S, Allgöwer F, Scheurich P, Bullinger E: Response to bistability in apoptosis: Roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J 2007, 92(9):3332-334.
  • [23]Chickarmane V, Paladugu SR, Bergmann F, Sauro HM: Bifurcation discovery tool. Bioinformatics 2005, 21(18):3688-690.
  • [24]Ferm L, Lötstedt P: Adaptive solution of the master equation in low dimensions. Appl Numerical Math 2009, 59(1):187-204.
  • [25]Munsky B, Khammash M: The finite state projection algorithm for the solution of the Chemical Master Equation. J Chem Phys 2006, 124(4):044104.
  • [26]Menz S, Latorre JC, Schütte C, Husinga W: Hybrid stochastic-deterministic solution of the Chemical Master Equation. Multiscale Model Simul 2012, 10(4):1232-1262.
  • [27]Dandach SH, Khammash M: Analysis of stochastic strategies in bacterial competence: A Master Equation approach. PLoS Comput Biol 2010, 6(11):1000985.
  • [28]Gérard C, Gonze D, Lemaigre F, Novák B: A model for the epigenetic switch linking inflammation to cell transformation: Deterministic and stochastic approaches. PLoS Comput Biol 2014, 10(1):1003455.
  • [29]Rath BA, Yousef KP, Katzenstein DK, Shafer RW, Schütte C, von Kleist M, Merigan TC: In vitro HIV-1 evolution in response to triple reverse transcriptase inhibitors & in silico phenotypic analysis. PLoS One 2013, 8(4):61102.
  • [30]Abou-Jaoudé W, Ouattara DA, Kaufman M: From structure to dynamics: frequency tuning in the p53-Mdm2 network I. Logical approach. J Theoret Biol. 2009, 258(4):561-77.
  • [31]Ouattara DA, Abou-Jaoudé W, Kaufman M: From structure to dynamics: frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches. J Theoret Biol 2010, 264(4):1177-1189.
  • [32]Albert R, Othmer HG: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theoret Biol 2003, 223(1):1-18.
  • [33]Veliz-Cuba A, Arthur J, Hochstetler L, Klomps V, Korpi E: On the relationship of steady states of continuous and discrete models arising from biology. Bull Math Biol 2012, 74(12):2779-792.
  • [34]Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger S. D. A, Theis FJ: Klamt: Transforming boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 2009, 3(1):1-21. BioMed Central Full Text
  • [35]Hengge R: Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009, 7(4):263-73.
  • [36]Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC Mathematical and Computational Biology). Chapman and Hall/CRC, Boca Raton, FL; 2006.
  • [37]Christen B, Christen M, Paul R, Schmid F, Folcher M, Jenoe P, Meuwly M, Jenal U: Allosteric control of cyclic di-GMP signaling. J Biol Chem 2006, 281(42):32015-2024.
  • [38]Thomas R, d’Ari R: Biological Feedback. CRC Press, Boca Raton, FL; 1990.
  • [39]Kubitschek HE, Friske JA: Determination of bacterial cell volume with the Coulter Counter. J Bacteriol 1986, 168(3):1466-1467.
  • [40]Zhang Q, Bhattacharya S, Andersen ME: Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biology 2013, 3(4):130031.
  • [41]Chaouiya C: Petri net modelling of biological networks. Brief Bioinform 2007, 8(4):210-9.
  • [42]Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977, 81:2340-381.
  • [43]Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling,. Nat Rev Microbiol 2009, 7(10):724-35.
  • [44]Krumsiek J, Pösterl S, Wittmann DM, Theis FJ: Odefy – from discrete to continuous models. BMC Bioinformatics 2010, 11:233. BioMed Central Full Text
  • [45]Siebert H, Bockmayr A: Temporal constraints in the logical analysis of regulatory networks. Theoret Comput Sci 2008, 391(3):258-75.
  • [46]Alur R, Henzinger TA, Lafferriere G, Pappas GJ. Discrete abstractions of hybrid systems. In: Proc. IEEE. IEEE: 2000. p. 971–84.. www.ieee.org webcite
  • [47]Lygeros J, Johansson KH, Simic SN, Zhang J, Sastry SS: Dynamical properties of hybrid automata. IEEE Trans Automat Control 2003, 48:2-17.
  • [48]Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY: Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 2007, 3(9):184.
  • [49]Christen M, Christen B, Folcher M, Schauerte A, Jenal U: Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 2005, 280(35):30829-0837.
  • [50]Lindenberg S. C-di-GMP Signaltransduktion in der Regulation der Expression des Biofilmregulators CsgD in Escherichia coli. PhD thesis. 2013.. http://www.diss.fu-berlin.de/diss/receive/FUDISS\_thesis\_000000094976 webcite
  • [51]Spangler C, Kaever V, Seifert R: Interaction of the diguanylate cyclase YdeH of Escherichia coli with 2’,(3’)-substituted purine and pyrimidine nucleotides. J Pharmacol Exp Ther 2011, 336(1):234-41.
  • [52]Milo R, Jorgensen P, Moran U, Weber G, Springer M: BioNumbers - the database of key numbers in molecular and cell biology. Nucleic Acids Res 2010, 38(suppl 1):750-3.
  文献评价指标  
  下载次数:84次 浏览次数:25次