期刊论文详细信息
BMC Evolutionary Biology
Rock outcrop orchids reveal the genetic connectivity and diversity of inselbergs of northeastern Brazil
Clarisse Palma-Silva1  Michael F Fay5  Leonardo P Félix6  Fábio de Barros3  David Draper4  Salvatore Cozzolino2  Fábio Pinheiro3 
[1] Laboratório de Ecologia Molecular, Departamento de Ecologia, Universidade Estadual Paulista, 13506-900 Rio Claro, SP, Brazil;Institute for Plant Protection, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy;Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado, Avenida Miguel Estéfano 3687, 04301-012 São Paulo, SP, Brazil;Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, CP 11 01 608 Loja, Ecuador;Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK;Departamento de Fitotecnia, Laboratório de Citogenética Vegetal, Universidade Federal da Paraíba, Areia, PB, Brazil
关键词: Orchidaceae;    Nuclear microsatellites;    Genetic drift;    Epidendrum secundum;    Epidendrum cinnabarinum;    Chloroplast microsatellites;    Caatinga;    Brazilian Atlantic Forest;   
Others  :  857765
DOI  :  10.1186/1471-2148-14-49
 received in 2014-01-07, accepted in 2014-03-07,  发布年份 2014
PDF
【 摘 要 】

Background

Because of their fragmented nature, inselberg species are interesting biological models for studying the genetic consequences of disjoint populations. Inselbergs are commonly compared with oceanic islands, as most of them display a marked ecological isolation from the surrounding area. The isolation of these rock outcrops is reflected in the high number of recorded endemic species and the strong floristic differences between individual inselbergs and adjacent habitats. We examined the genetic connectivity of orchids Epidendrum cinnabarinum and E. secundum adapted to Neotropical inselbergs of northeastern Brazil. Our goals were to identify major genetic divergences or disjunctions across the range of the species and to investigate potential demographic and evolutionary mechanisms leading to lineage divergence in Neotropical mountain ecosystems.

Results

Based on plastid markers, high genetic differentiation was found for E. cinnabarinum (FST = 0.644) and E. secundum (FST = 0.636). Haplotypes were not geographically structured in either taxon, suggesting that restricted gene flow and genetic drift may be significant factors influencing the diversification of these inselberg populations. Moreover, strong differentiation was found between populations over short spatial scales, indicating substantial periods of isolation among populations. For E. secundum, nuclear markers indicated higher gene flow by pollen than by seeds.

Conclusions

The comparative approach adopted in this study contributed to the elucidation of patterns in both species. Our results confirm the ancient and highly isolated nature of inselberg populations. Both species showed similar patterns of genetic diversity and structure, highlighting the importance of seed-restricted gene flow and genetic drift as drivers of plant diversification in terrestrial islands such as inselbergs.

【 授权许可】

   
2014 Pinheiro et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723084306869.pdf 3140KB PDF download
93KB Image download
38KB Image download
100KB Image download
【 图 表 】

【 参考文献 】
  • [1]Porembski S, Barthlott W: Inselbergs. Biotic diversity of isolated rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag; 2000.
  • [2]Seine R, Porembski S, Becker U: Phytogeography. In Inselbergs. Biotic diversity of isolated rock outcrops in tropical and temperate regions. Edited by Porembski S, Barthlott W. Berlin: Springer; 2000:435-448.
  • [3]Gomes P, Alves M: Floristic and vegetational aspects of an inselberg in the semi-arid region of Northeast Brazil. Edinb J Bot 2009, 66:1-18.
  • [4]Speziale KL, Ezcurra C: The role of outcrops in the diversity of patagonian vegetation: relicts of glacial palaeofloras? Flora 2012, 207:141-149.
  • [5]Scarano FR: Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian atlantic rainforest. Ann Bot 2002, 90:1-8.
  • [6]MacArthur RH, Wilson EO: The theory of island biogeography. Princeton: Princeton University Press; 1967.
  • [7]Palma-Silva C, Wendt T, Pinheiro F, Barbará T, Fay MF, Cozzolino S, Lexer C: Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol Ecol 2011, 20:3185-3201.
  • [8]Levy F, Neal CL: Spatial and temporal genetic structure in chloroplast and allozyme markers in Phacelia dubia implicate genetic drift. Heredity 1999, 82:422-431.
  • [9]Byrne M, Hopper SD: Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia. Biol J Linn Soc 2008, 93:177-188.
  • [10]Collevatti RG, Rabelo SG, Vieira RF: Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 2009, 104:655-664.
  • [11]Barbosa AR, Fiorini CF, Silva-Pereira V, Mello-Silva R, Borba EL: Geographical genetic structuring and phenotypic variation in the Vellozia hirsuta (Velloziaceae) ochlospecies complex. Am J Bot 2012, 99:1477-1488.
  • [12]Sarthou C, Samadi S, Boisselier-Dubayle MC: Genetic structure of the saxicole Pitcairnia geyskesii (Bromeliaceae) on inselbergs in French Guiana. Am J Bot 2001, 88:861-868.
  • [13]DeChaine EG, Martin AP: Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am J Bot 2005, 92:477-486.
  • [14]Barbará T, Martinelli G, Fay MF, Mayo SJ, Lexer C: Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol Ecol 2007, 16:1981-1992.
  • [15]Barbará T, Martinelli G, Palma-Silva C, Fay MF, Mayo SJ, Lexer C: Genetic relationships and variation in reproductive strategies in four closely related bromeliads adapted to Neotropical ‘inselbergs’: Alcantarea glaziouana, A. regina, A. geniculata and A. imperialis (Bromeliaceae). Ann Bot 2009, 103:65-77.
  • [16]Freeland JR: Molecular Ecology. Chicester: John Wiley & Sons; 2005.
  • [17]Porembski S, Martinelli G, Ohlemüller R, Barthlott W: Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers Distrib 1998, 4:107-119.
  • [18]Bermingham E, Moritz C: Comparative phylogeography: concepts and applications. Mol Ecol 1998, 7:367-369.
  • [19]Arbogast BS, Kenagy GJ: Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 2001, 28:819-825.
  • [20]Hughes CE, Pennington RT, Antonelli A: Neotropical plant evolution: assembling the big picture. Bot J Linn Soc 2013, 171:1-18.
  • [21]Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C: Phylogeographic patterns shed light on evolutionary process in South America. Mol Ecol 2013, 22:1193-1213.
  • [22]Bennett KD, Provan J: What do we mean by ‘refugia’? Quat Sci Rev 2008, 27:2449-2455.
  • [23]Collevatti RG, Terribile LC, Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF: Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J Biogeogr 2013, 40:345-358.
  • [24]Araújo MB, Peterson AT: Uses and misuses of bioclimatic envelope modelling. Ecology 2012, 93:1527-1539.
  • [25]Collevatti RG, Telles MPC, Nabout JC, Chaves LJ, Soares TN: Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas. Heredity 2013, 111:97-105.
  • [26]Jakob SS, Martinez-Meyer E, Blattner FR: Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Mol Biol Evol 2009, 26:907-923.
  • [27]Werneck FP, Gamble T, Colli GR, Rodrigues MT, Sites JW Jr: Deep diversification and long-term persistence in the South American ‘Dry Diagonal’: integrating continent -wide phylogeography and distribution modeling of geckos. Evolution 2012, 66:3014-3034.
  • [28]Queiroz LP: The Brazilian Caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In In Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. Edited by Pennington RT, Lewis GP, Ratter JA. Boca Raton: CRC Press; 2006:121-157.
  • [29]Carnaval AC, Bates JM: Amphibian DNA shows marked genetic structure and tracks Pleistocene climate change in Northeastern Brazil. Evolution 2007, 61:2942-2957.
  • [30]Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho AT, Spichiger R, Naciri Y: The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Mol Ecol 2008, 17:3147-3159.
  • [31]Moraes EM, Yotoko KSC, Manfrin MH, Solferini VN, Sene FM: Phylogeography of the cactophilic species Drosophila gouveai: demographic events and divergence timing in dry vegetation enclaves in eastern Brazil. J Biogeogr 2009, 36:2136-2147.
  • [32]Franco FF, Manfrin MH: Recent demographic history of cactophilic Drosophila species can be related to Quaternary palaeoclimatic changes in South America. J Biogeogr 2012, 40:142-154.
  • [33]Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA: Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc Lond B Biol Sci 2004, 359:515-538.
  • [34]Novaes R, Lemos-Filho J, Ribeiro R, Lovato M: Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Mol Ecol 2010, 19:985-998.
  • [35]Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr: Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 2011, 20:272-288.
  • [36]Conceição AA, Pirani JR, Meirelles ST: Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Rev Bras Bot 2007, 30:641-656.
  • [37]Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F: Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013, 3:3824-3837.
  • [38]Pinheiro F, Cozzolino S: Epidendrum (Orchidaceae) as a model system in ecological and evolutionary studies in Neotropics. Taxon 2013, 62:77-88.
  • [39]van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF: Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
  • [40]Pinheiro F, Barros F, Palma-Silva C, Fay MF, Lexer C, Cozzolino S: Phylogeography and genetic differentiation along the distributional range of the orchid Epidendrum fulgens: a Neotropical coastal species not restricted to glacial refugia. J Biogeogr 2011, 38:1923-1935.
  • [41]Safford HD, Martinelli G: Southeast Brazil. In Inselbergs. Biotic diversity of isolated rock outcrops in tropical and temperate regions. Edited by Porembski S, Barthlott W. Berlin: Springer; 2000:339-389.
  • [42]Behling H, Arz HW, Patzold J, Wefer G: Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104–1. Quat Sci Rev 2000, 19:981-994.
  • [43]Mayol M, Palau C, Rosselló JA, González-Martínez SC, Molins A, Riba M: Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands. Ann Bot 2012, 109:429-441.
  • [44]Hutchison DW, Templeton AR: Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 1999, 53:1898-1914.
  • [45]Birky CW Jr: Relaxed cellular controls and organelle heredity. Science 1983, 222:468-475.
  • [46]Barbará T, Lexer C, Martinelli G, Mayo S, Fay MF, Heuertz M: Within-population spatial genetic structure in four naturally fragmented species of a Neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 2008, 101:285-296.
  • [47]Cozzolino S, Widmer A: Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 2005, 20:487-494.
  • [48]Phillips RD, Dixon KW, Peakall R: Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family. Mol Ecol 2012, 21:5208-5220.
  • [49]Ramos ACS, Lemos-Filho JP, Lovato MB: Phylogeographical structure of the Neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Heredity 2009, 100:206-216.
  • [50]Martins FM, Templeton A, Pavan ACO, Kohlbach BC, Morgante JS: Phylogeography of the common vampire bat (Desmodus rotundus): Marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol 2009, 9:294. BioMed Central Full Text
  • [51]Pinheiro F, Cozzolino S, Barros F, Gouveia TMZM, Suzuki RM, Fay MF, Palma-Silva C: Phylogeographic structure and outbreeding depression reveal early stages of reproductive isolation in the Neotropical orchid Epidendrum denticulatum. Evolution 2013, 67:2024-2039.
  • [52]Mäder G, Fregonezi JN, Lorenz-Lemke AP, Bonatto SL, Freitas LB: Geological and climatic changes in quaternary shaped the evolutionary history of Calibrachoa heterophylla, an endemic South-Atlantic species of petúnia. BMC Evol Biol 2013, 13:178. BioMed Central Full Text
  • [53]Giulietti AM, Pirani JR: Patterns of geographical distribution of some plant species from Espinhaço range, Minas Gerais and Bahia, Brazil. In Proceedings of a workshop on Neotropical distribution patterns. Edited by Vanzolini PE, Heyer WR. Rio de Janeiro: Academia Brasileira de Ciências; 1988:39-69.
  • [54]Rapini A, Ribeiro PL, Lambert S, Pirani JR: A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 2008, 4:15-23.
  • [55]Pinheiro F, Barros F, Palma-Silva C, Meyer D, Fay MF, Suzuki RM, Lexer C, Cozzolino S: Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol Ecol 2010, 19:3981-3994.
  • [56]Twyford AD, Ennos RA: Next generation hybridization and introgression. Heredity 2012, 108:179-189.
  • [57]Sambatti JBM, Ortiz-Barrientos D, Baack EJ, Rieseberg LH: Ecological selection maintains cytonuclear incompatibilities in hybridizing sunflowers. Ecol Lett 2008, 11:1082-1091.
  • [58]Moyle LC, Olson MS, Tiffin P: Patterns of reproductive isolation in three angiosperm genera. Evolution 2004, 58:1195-1208.
  • [59]Hágsater E, Soto-Arenas MA: Epidendrum L. In Genera Orchidacearum Vol. 4. Edited by Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. Oxford: Oxford University Press; 2005:236-251.
  • [60]Salatino ML, Salatino A, Barros F, Pinheiro F, Koehler S, Corrêa AM F: Phylogenetic relationships and infrageneric classification of Epidendrum subgenus Amphiglottium (Laeliinae, Orchidaceae). Plant Systematics and Evolution 2009, 283:165-177.
  • [61]Pessoa EM, Alves M, Alves-Araújo A, Palma-Silva C, Pinheiro F: Integrating different tools to disentangle species complexes: a case study in Epidendrum (Orchidaceae). Taxon 2012, 61:721-734.
  • [62]Pansarin ER, Amaral MCE: Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae) - floral variation: a consequence of natural hybridization? Plant Biol 2008, 10:211-219.
  • [63]Pinheiro F, Santos MO, Barros F, Meyer D, Salatino A, Souza AP, Cozzolino S: Isolation and characterization of microsatellite loci in the Brazilian orchid Epidendrum fulgens. Conserv Genet 2008, 9:1661-1663.
  • [64]Pinheiro F, Palma-Silva C, Barros F, Félix LP, Lexer C, Cozzolino S, Fay MF: Chloroplast microsatellite markers for the Neotropical orchid genus Epidendrum, and cross-amplification in other Laeliinae species (Orchidaceae). Conserv Genet Resour 2009, 1:505-511.
  • [65]Pinheiro F, Santos MO, Palma-Silva C, Barros F, Meyer D, Salatino A, Souza AP, Cozzolino S: Isolation and characterization of microsatellite loci in Epidendrum puniceoluteum, an endemic orchid from the Atlantic Rainforest. Mol Ecol Resour 2008, 8:1114-1116.
  • [66]Cortés-Palomec AC, McCauley RA, Oyama K: Isolation, characterization and cross-amplification of polymorphic microsatellite loci in Laelia speciosa (Orchidaceae). Mol Ecol Resour 2008, 8:135-138.
  • [67]Petit RJ, El Mousadik A, Pons O: Identifying populations for conservation on the basis of genetic markers. Conserv Biol 1998, 12:844-855.
  • [68]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1358-1370.
  • [69]Dieringer D, Schlötterer C: Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 2003, 3:167-169.
  • [70]Kalinowski ST: hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 2005, 5:187-189.
  • [71]Raymond M, Rousset F: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995, 86:248-249.
  • [72]Bandelt HJ, Forster P, Roehl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [73]Heuertz M, Freville H, Charbonnel N, Hardy OJ: Microsatellite allele sizes: a simple test to assess their significance. Genetics 2003, 163:1467-1482.
  • [74]Slatkin M: A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139:457-462.
  • [75]Pons O, Petit RJ: Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 1996, 144:1237-1245.
  • [76]Nei M, Chesser RK: Estimation of fixation indices and gene diversities. Ann Hum Genet 1983, 47:253-259.
  • [77]Hedrick P: A standardized genetic differentiation measure. Evolution 2005, 59:1633-1638.
  • [78]Hardy OJ, Vekemans X: SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2002, 2:618-620.
  • [79]Hubisz MJ, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009, 9:1322-1332.
  • [80]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [81]Earl DA, von Holdt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012, 4:359-361.
  • [82]Garza JC, Williamson EG: Detection of reduction in population size using data from microsatellite loci. Mol Ecol 2001, 10:305-318.
  • [83]Ennos RA: Estimating the relative rates of pollen and seed migration among plant-populations. Heredity 1994, 72:250-259.
  • [84]Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 2005, 14:689-701.
  • [85]Phillips SJ, Dudik M, Schapire RE: A maximum entropy approach to species distribution modeling. ACM International Proc Ser 2004, 69:655.
  • [86]Phillips SJ, Dudik M, Schapire RE: Maximum entropy modelling of species geographic distributions. Ecol Model 2006, 190:231-259.
  • [87]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005, 25:1965-1978.
  • [88]Otto-Bliesner BL, Marshall S, Overpeck J, Miller G, Hu A, CAPE Last Interglacial Project Members: Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 2006, 311:1751-1753.
  • [89]Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum — Part 1: experiments and large-scale features. Climate of the Past 2007, 3:261-277.
  • [90]Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD: The Community Climate System Model Version 3 (CCSM3). J Climate 2006, 19:2122-2143.
  • [91]Schenk CJ, Viger RJ, Anderson CP: Maps showing geology, oil and gas fields, and geologic provinces of South America. Denver Colorado: 97-470D. U.S. Geological Survey; 1999. http://pubs.usgs.gov/of/1997/ofr-97-470/OF97-470D/ webcite
  • [92]Fielding AH, Bell JF: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 1997, 24:38-49.
  文献评价指标  
  下载次数:19次 浏览次数:17次