期刊论文详细信息
BMC Neuroscience
Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills
Georg Mayer1  Christine Martin1 
[1] Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
关键词: Panarthropod;    Arthropod;    Neuronal tracing;    Pharynx;    Brain;    Central nervous system;   
Others  :  1232537
DOI  :  10.1186/s12868-015-0191-1
 received in 2015-02-19, accepted in 2015-08-12,  发布年份 2015
【 摘 要 】

Background

While the tripartite brain of arthropods is believed to have evolved by a fusion of initially separate ganglia, the evolutionary origin of the bipartite brain of onychophorans—one of the closest arthropod relatives—remains obscure. Clarifying the segmental identity of post-oral commissures and pharyngeal nerves might provide useful insights into the evolution of the onychophoran brain. We therefore performed retrograde fills of these commissures and nerves in the onychophoran Euperipatoides rowelli.

Results

Our fills of the anterior and posterior pharyngeal nerves revealed groups of somata that are mainly associated with the deutocerebrum. This resembles the innervation pattern of other feeding structures in Onychophora, including the jaws and several lip papillae surrounding the mouth. Our fills of post-oral commissures in E. rowelli revealed a graded arrangement of anteriorly shifted somata associated with post-oral commissures #1 to #5. The number of deutocerebral somata associated with each commissure decreases posteriorly, i.e., commissure #1 shows the highest and commissure #5 the lowest numbers of associated somata, whereas none of the subsequent median commissures, beginning with commissure #6, shows somata located in the deutocerebrum.

Conclusions

Based on the graded and shifted arrangement of somata associated with the anteriormost post-oral commissures, we suggest that the onychophoran brain, which is a bipartite syncerebrum, might have evolved by a successive anterior/anterodorsal migration of neurons towards the protocerebrum in the last onychophoran ancestor. This implies that the composite brain of onychophorans and the compound brain of arthropods might have independent evolutionary origins, as in contrast to arthropods the onychophoran syncerebrum is unlikely to have evolved by a fusion of initially separate ganglia.

【 授权许可】

   
2015 Martin and Mayer.

附件列表
Files Size Format View
Fig.10. 68KB Image download
Fig.9. 36KB Image download
Fig.8. 101KB Image download
Fig.7. 39KB Image download
Fig.6. 52KB Image download
Fig.5. 58KB Image download
Fig.4. 86KB Image download
Fig.3. 83KB Image download
Figure 5. 64KB Image download
Fig.1. 80KB Image download
Fig.10. 68KB Image download
Fig.9. 36KB Image download
Fig.8. 101KB Image download
Fig.7. 39KB Image download
Fig.6. 52KB Image download
Fig.5. 58KB Image download
Fig.4. 86KB Image download
Fig.3. 83KB Image download
Fig.2. 54KB Image download
Fig.1. 80KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.1.

Figure 5.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

【 参考文献 】
  • [1]Fanenbruck M, Harzsch S, Wägele JW: The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA. 2004, 101:3868-3873.
  • [2]Homberg U: Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol. 1991, 303:245-254.
  • [3]Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A: Architectural principles and evolution of the arthropod central nervous system. In Arthropod Biology and Evolution. Edited by Minelli A, Boxshall G, Fusco G. Springer, Heidelberg; 2013:299-342.
  • [4]Mayer G, Kauschke S, Rüdiger J, Stevenson PA: Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One. 2013, 8:e59090.
  • [5]Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, et al.: Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool. 2010, 7:29. BioMed Central Full Text
  • [6]Scholtz G, Edgecombe GD: The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol. 2006, 216:395-415.
  • [7]Mayer G. Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G, editors. Structure and Evolution of Invertebrate Nervous Systems. Oxford: Oxford University Press; 2015 (in press).
  • [8]Mayer G, Whitington PM, Sunnucks P, Pflüger H-J: A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol. 2010, 10:255. BioMed Central Full Text
  • [9]Strausfeld NJ, Strausfeld C, Stowe S, Rowell D, Loesel R: The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev. 2006, 35:169-196.
  • [10]Cong P, Ma X, Hou X, Edgecombe GD, Strausfeld NJ: Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature. 2014, 513:538-542.
  • [11]Eriksson BJ, Samadi L, Schmid A: The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol. 2013, 223:237-246.
  • [12]Franke FA, Mayer G: Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS One. 2014, 9:e114383.
  • [13]Mayer G, Martin C, de Sena Oliveira I, Franke FA, Gross V: Latest anomalocaridid affinities challenged. Nature 2014, 516:E1-E2.
  • [14]Martin C, Mayer G: Neuronal tracing of oral nerves in a velvet worm—implications for the evolution of the ecdysozoan brain. Front Neuroanat. 2014, 8(7):1-13.
  • [15]Ou Q, Shu D, Mayer G: Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun. 2012, 3:1261.
  • [16]Whitington PM, Mayer G: The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev. 2011, 40:193-209.
  • [17]Mayer G, Harzsch S: Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol. 2007, 7:118. BioMed Central Full Text
  • [18]Mayer G, Harzsch S: Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol. 2008, 507:1196-1208.
  • [19]Mayer G, Whitington PM: Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol. 2009, 335:263-275.
  • [20]Henry LM: The nervous system and the segmentation of the head in the Annulata. Microentomology. 1948, 13:27-48.
  • [21]von Kennel J. Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. I. Theil. Arb Zool-Zootom Inst Würzburg. 1885;7:95–229.
  • [22]Boyan GS, Reichert H, Hirth F: Commissure formation in the embryonic insect brain. Arthropod Struct Dev. 2003, 32:61-77.
  • [23]Fischer AHL, Scholtz G: Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Biol 2010, 129:59-76.
  • [24]Harzsch S: The tritocerebrum of Euarthropoda: a “non-drosophilocentric” perspective. Evol Dev. 2004, 6:303-309.
  • [25]Hirth F, Loop T, Egger B, Miller DFB, Kaufman TC, Reichert H: Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development. 2001, 128:4781-4788.
  • [26]Mittmann B, Scholtz G: Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol. 2003, 213:9-17.
  • [27]Fedorow B. Zur Anatomie des Nervensystems von Peripatus. I. Das Neurosomit von Peripatus tholloni. Zool Jahrb Abt Anat Ontog Tiere. 1926;48:273–310.
  • [28]Altman JS, Kien J: Functional organization of the subesophageal ganglion in arthropods. In Arthropod brain, its evolution, development, structure, and functions. Edited by Gupta AP. Wiley, New York; 1987:265-301.
  • [29]Kirsch R, Richter S: The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with Confocal Scanning Microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev. 2007, 36:143-156.
  • [30]Marcus E. Tardigrada. Dr. H. G. Bronns Klassen und Ordnungen des Tier-Reichs wissenschaftlich dargestellt in Wort und Bild. Leipzig: Akademische Verlagsgesellschaft; 1929. p. 1–609.
  • [31]Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, et al.: Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol. 2013, 13:230. BioMed Central Full Text
  • [32]Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM: Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade Panarthropoda. J Morphol. 2012, 273:1227-1245.
  • [33]Schulze C, Neves RC, Schmidt-Rhaesa A: Comparative immunohistochemical investigation on the nervous system of two species of Arthrotardigrada (Heterotardigrada, Tardigrada). Zool Anz. 2014, 253:225-235.
  • [34]Zantke J, Wolff C, Scholtz G: Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology. 2008, 127:21-36.
  • [35]Gross V, Mayer G: Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling. EvoDevo. 2015, 6:12. BioMed Central Full Text
  • [36]Schürmann FW: Common and special features of the nervous system of Onychophora: a comparison with arthropoda, annelida and some other invertebrates. In The Nervous System of Invertebrates: an evolutionary and comparative approach. Edited by Breidbach O, Kutsch W. Birkhäuser, Basel; 1995:139-158.
  • [37]Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, et al.: MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 2011, 108:15920-15924.
  • [38]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al.: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452:745-749.
  • [39]Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore J, Telford M, et al.: Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol. 2010, 2:425-440.
  • [40]Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O: The evolution of the Ecdysozoa. Philos Trans R Soc B Biol Sci. 2008, 363:1529-1537.
  • [41]Baer A, Mayer G: Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol. 2012, 273:1079-1088.
  • [42]Robson EA, Lockwood APM, Ralph R: Composition of the blood in Onychophora. Nature. 1966, 209:533.
  • [43]Pflüger HJ, Field LH: A locust chordotonal organ coding for proprioceptive and acoustic stimuli. J Comp Physiol A. 1999, 184:169-183.
  文献评价指标  
  下载次数:237次 浏览次数:42次