期刊论文详细信息
BMC Pharmacology and Toxicology
Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats
Klaus Eder1  Erika Most1  Robert Ringseis1  Aline Couturier1 
[1] Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
关键词: Zucker rats;    Peroxisome proliferator-activated receptor α;    Carnitine synthesis;    Niacin;   
Others  :  829275
DOI  :  10.1186/2050-6511-15-37
 received in 2014-03-25, accepted in 2014-07-01,  发布年份 2014
PDF
【 摘 要 】

Background

Activation of peroxisome proliferator-activated receptor (PPAR)α and PPARδ causes an elevation of tissue carnitine concentrations through induction of genes involved in carnitine uptake [novel organic cation transporter 2, (OCTN2)], and carnitine biosynthesis [γ-butyrobetaine dioxygenase (BBD), 4-N-trimethyl-aminobutyraldehyde dehydrogenase (TMABA-DH)]. Recent studies showed that administration of the plasma lipid-lowering drug niacin causes activation of PPARα and/or PPARδ in tissues of obese Zucker rats, which have a compromised carnitine status and an impaired fatty acid oxidation capacity. Thus, we hypothesized that niacin administration to obese Zucker rats is also able to improve the diminished carnitine status of obese Zucker rats through PPAR-mediated stimulation of genes involved in carnitine uptake and biosynthesis.

Methods

To test this hypothesis, we used plasma, muscle and liver samples from a recent experiment with obese Zucker rats, which were fed either a niacin-adequate diet (30 mg niacin/kg diet) or a diet with a pharmacological niacin dose (780 mg niacin/kg diet), and determined concentrations of carnitine in tissues and mRNA and protein levels of genes critical for carnitine homeostasis (OCTN2, BBD, TMABA-DH). Statistical data analysis of all data was done by one-way ANOVA, and Fisher’s multiple range test.

Results

Rats of the obese niacin group had higher concentrations of total carnitine in plasma, skeletal muscle and liver, higher mRNA and protein levels of OCTN2, BBD, and TMABA-DH in the liver and higher mRNA and protein levels of OCTN2 in skeletal muscle than those of the obese control group (P < 0.05), whereas rats of the obese control group had lower concentrations of total carnitine in plasma and skeletal muscle than lean rats (P < 0.05).

Conclusion

The results show for the first time that niacin administration stimulates the expression of genes involved in carnitine uptake and biosynthesis and improves the diminished carnitine status of obese Zucker rats. We assume that the induction of genes involved in carnitine uptake and biosynthesis by niacin administration is mediated by PPAR-activation.

【 授权许可】

   
2014 Couturier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714062931135.pdf 434KB PDF download
Figure 2. 40KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gille A, Bodor ET, Ahmed K, Offermanns S: Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 2008, 48:79-106.
  • [2]Guyton JR: Effect of niacin on atherosclerotic cardiovascular disease. Am J Cardiol 1998, 82:18U-23U. discussion 39U-41U
  • [3]Ganji SH, Kamanna VS, Kashyap ML: Niacin and cholesterol: role in cardiovascular disease (review). J Nutr Biochem 2003, 14:298-305.
  • [4]Kamanna VS, Kashyap ML: Mechanism of action of niacin. Am J Cardiol 2008, 101:20B-26B.
  • [5]Carlson LA: Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med 2005, 258:94-114.
  • [6]Choi S, Yoon H, Oh K, Oh YT, Kim YI, Kang I, Youn JH: Widespread effects of nicotinic acid on gene expression in insulin-sensitive tissues: implications for unwanted effects of nicotinic acid treatment. Metab Clin Exp 2011, 60:134-144.
  • [7]Watt MJ, Southgate RJ, Holmes AG, Febbraio MA: Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) α and δ and PPAR coactivator 1α in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol 2004, 33:533-544.
  • [8]Mandard S, Müller M, Kersten S: Peroxisome proliferator-activated receptor α target genes. Cell Mol Life Sci 2004, 61:393-416.
  • [9]Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J Clin Invest 1999, 103:1489-1498.
  • [10]Leone TC, Weinheimer CJ, Kelly DP: A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 1999, 96:7473-7478.
  • [11]Gutgesell A, Wen G, König B, Koch A, Spielmann J, Stangl GI, Eder K, Ringseis R: Mouse carnitine-acylcarnitine translocase (CACT) is transcriptionally regulated by PPARα and PPARδ in liver cells. Biochim Biophys Acta 2009, 1790:1206-1216.
  • [12]Wen G, Ringseis R, Eder K: Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor α (PPARα) via a PPRE located in the first intron. Biochem Pharmacol 2010, 79:768-776.
  • [13]Schoonjans K, Staels B, Auwerx J: The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1996, 1302:93-109.
  • [14]Zhou X, Ringseis R, Wen G, Eder K: Carnitine transporter OCTN2 and carnitine uptake in bovine kidney cells is regulated by peroxisome proliferator-activated receptor β/δ. Acta Vet Scand 2014, 56:21.
  • [15]Wen G, Kühne H, Rauer C, Ringseis R, Eder K: Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 2011, 82:175-183.
  • [16]Wen G, Ringseis R, Rauer C, Eder K: The mouse gene encoding the carnitine biosynthetic enzyme 4-N-trimethylaminobutyraldehyde dehydrogenase is regulated by peroxisome proliferator-activated receptor α. Biochim Biophys Acta 1819, 2012:357-365.
  • [17]Ringseis R, Pösel S, Hirche F, Eder K: Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats. Pharmacol Res 2007, 56:175-183.
  • [18]Ringseis R, Lüdi S, Hirche F, Eder K: Treatment with pharmacological peroxisome proliferator-activated receptor α agonist clofibrate increases intestinal carnitine absorption in rats. Pharmacol Res 2008, 58:58-64.
  • [19]Ringseis R, Rosenbaum S, Gessner DK, Herges L, Kubens JF, Mooren F, Krüger K, Eder K: Supplementing obese Zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibers. J Nutr 2013, 143:125-131.
  • [20]Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM: Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009, 284:22840-22852.
  • [21]Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JRB, Newgard CB, Lopaschuk GD, Muoio DM: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008, 7:45-56.
  • [22]Ringseis R, Mooren F, Keller J, Couturier A, Wen G, Hirche F, Stangl GI, Eder K, Krüger K: Regular endurance exercise improves the diminished hepatic carnitine status in mice fed a high-fat diet. Mol Nutr Food Res 2011, 55(Suppl 2):S193-S202.
  • [23]Reeves PG, Nielsen FH, Fahey GC: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993, 123:1939-1951.
  • [24]Liu M, Zhang D, Wang X, Zhang L, Han J, Yang M, Xiao X, Zhang Y, Liu H: Simultaneous quantification of niacin and its three main metabolites in human plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2012, 904:107-114.
  • [25]Scholz K, Kynast AM, Couturier A, Mooren F, Krüger K, Most E, Eder K, Ringseis R: Supplementing healthy rats with a high-niacin dose has no effect on muscle fiber distribution and muscle metabolic phenotype. Eur J NutrEpub ahead of print
  • [26]Hirche F, Fischer M, Keller J, Eder K: Determination of carnitine, its short chain acyl esters and metabolic precursors trimethyllysine and gamma-butyrobetaine by quasi-solid phase extraction and MS/MS detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877:2158-2162.
  • [27]Keller J, Ringseis R, Priebe S, Guthke R, Kluge H, Eder K: Dietary L-carnitine alters gene expression in skeletal muscle of piglets. Mol Nutr Food Res 2011, 55:419-429.
  • [28]Li D, Tian Y, Guo J, Sun W, Lun Y, Guo M, Luo N, Cao Y, Cao J, Gong X, Zhou S: Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr 2013, 110:2156-2164.
  • [29]Kirkland JB: Niacin status, NAD distribution and ADP-ribose metabolism. Curr Pharm Des 2009, 15:3-11.
  • [30]Mullangi R, Srinivas NR: Niacin and its metabolites: role of LC-MS/MS bioanalytical methods and update on clinical pharmacology. An overview. Biomed Chromatogr 2011, 25:218-237.
  • [31]Rebouche CJ, Bosch EP, Chenard CA, Schabold KJ, Nelson SE: Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr 1989, 119:1907-1913.
  • [32]Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A: Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 1998, 273:20378-20382.
  • [33]Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A: Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 2000, 275:40064-40072.
  • [34]Vaz FM, Wanders RJA: Carnitine biosynthesis in mammals. Biochem J 2002, 361:417-429.
  • [35]Sanderson LM, Boekschoten MV, Desvergne B, Müller M, Kersten S: Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver. Physiol Genomics 2010, 41:42-52.
  • [36]Oh YT, Oh K, Choi YM, Jokiaho A, Donovan C, Choi S, Kang I, Youn JH: Continuous 24-h nicotinic acid infusion in rats causes FFA rebound and insulin resistance by altering gene expression and basal lipolysis in adipose tissue. Am J Physiol Endocrinol Metab 2011, 300:E1012-E1021.
  • [37]Poynten AM, Gan SK, Kriketos AD, O’Sullivan A, Kelly JJ, Ellis BA, Chisholm DJ, Campbell LV: Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metab Clin Exp 2003, 52:699-704.
  • [38]Quabbe HJ, Luyckx AS, L’age M, Schwarz C: Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab 1983, 57:410-414.
  • [39]Koch A, König B, Stangl GI, Eder K: PPARα mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis. Exp Biol Med (Maywood) 2008, 233:356-365.
  文献评价指标  
  下载次数:37次 浏览次数:19次