期刊论文详细信息
BMC Clinical Pharmacology
Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water
Oladipo Ademuyiwa3  Olusegun O. Odukoya5  Elizabeth. A. Balogun2  Okechukwu. B. Onunkwor3  Oluwatosin. A. Dosumu3  David O. Babayemi3  Esther O. Abam6  Olabisi O. Ogunrinola1  Adedoja D. Wusu1  Olusegun K. Afolabi4 
[1]Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria
[2]Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
[3]Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
[4]Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
[5]Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria
[6]Biochemistry Unit, Department of Chemical Sciences, Bells University of Technology, Ota, Nigeria
关键词: Dyslipidemia;    Drinking water;    Pentavalent inorganic arsenic;    Trivalent inorganic arsenic;   
Others  :  1218914
DOI  :  10.1186/s40360-015-0015-z
实施日期:2015-05-24,发布日期:2015-06-05
PDF
【 摘 要 】

Background

Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic.

Methods

In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks.

Results

Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol.

Conclusion

Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at “low” or “medium” doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.

【 授权许可】

   
2015 Afolabi et al.

【 预 览 】
附件列表
Files Size Format View
20150714011957443.pdf 1599KB PDF download
Fig. 13. 36KB Image download
Fig. 12. 37KB Image download
Fig. 11. 33KB Image download
Fig. 10. 33KB Image download
Fig. 9. 28KB Image download
Figure 1. 79KB Image download
Fig. 7. 34KB Image download
Fig. 6. 40KB Image download
Fig. 5. 34KB Image download
Fig. 4. 44KB Image download
Fig. 3. 47KB Image download
Fig 2. 31KB Image download
Fig. 1. 32KB Image download
【 图 表 】

Fig. 1.

Fig 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Figure 1.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

【 参考文献 】
  • [1]Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011; 123(2):305-332.
  • [2]Smeester L, Rager JE, Bailey KA, Guan X, Smith N, Garcia-Vargas G, Del Razo L-M, Drobná Z, Kelkar H, Stýblo M et al.. Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011; 24:165-167.
  • [3]Mazumder DG, Dasgupta UB. Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J Med Sci. 2011; 27:360-370.
  • [4]States JC, Srivastava S, Chen Y, Barchowsky A. Arsenic and cardiovascular disease. Toxicol Sci. 2009; 107:312-323.
  • [5]Suwalsky M, Rivera C, Sotomayor C, Jemiola-Rzeminsky M, Strzalka K. Monomethylarsonate (MMA v) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers. Biophys Chem. 2008; 132:1-8.
  • [6]Román DA, Pizarro I, Rivera L, Cámara C, Palacios MA, Gómez MM, Solar C. An approach to the arsenic status in cardiovascular tissues in patients with coronary heart disease. Human Exp Toxicol. 2011; 30(9):1150-1164.
  • [7]Ademuyiwa O, Ugbaja RN, Idumebor F, Adebawo O. Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta. Nigeria Lipids Health Dis. 2005; 4:19. BioMed Central Full Text
  • [8]Ginsberg HN. Lipoprorein metabolism and its relationship to atherosclerosis. Med Clin North Am. 1994; 78:1-20.
  • [9]Aguilar-Salinas CA, Olaiz G, Valles V, Torres JMR, Pérez FJG, Rull JA, Rojas R, Franco A, Sepulveda J. High prevalence of HDL cholesterol concentrations and mixedhyperlipidemia in a Mexican nationwide survey. J Lipid Res. 2001; 42:1298-1307.
  • [10]Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci. 2008; 102(2):207-218.
  • [11]Cheng TJ, Chuu JJ, Chang CY, Tsai WC, Chen KJ, Guo HR. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism. Toxicol Appl Pharmacol. 2011; 256:146-153.
  • [12]Elsenhans B, Ademuyiwa O, Schmolke G, Scharper J, Hunder G. Arsenic-copper interactions in the kidneys of laboratory animals. In: Metal-metal interactions. Elsenhans B, Forth W, Schümann K, editors. Bertelsmann Foundation Publishers, Gütersloh, Germany; 1993: p.110-128.
  • [13]Hunder G, Scharper J, Ademuyiwa O, Elsenhans B. Species differences in arsenic-mediated renal copper accumulation: a comparison between rats, mice and guinea-pigs. Hum Exp Toxicol. 1999; 18:699-705.
  • [14]Xie Y, Trouba KJ, Liu J, Waalkes MP, Germolec DR. Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.Ac) mice. Environ Health Perspect. 2004; 112(12):1255-1263.
  • [15]Yamamoto S, Konishi Y, Matsuda T, Murai T, Shibata M-A, Matsui-Yuasa I, Otani S, Kuroda K, Endo G, Fukushima S. Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens. Cancer Res. 1995; 55:1271-1276.
  • [16]Ademuyiwa O, Agarwal R, Chandra R, Behari JR. Lead-induced phospholipidosis and cholesterogenesis in rat tissues. Chem Biol Interact. 2009; 179:314-320.
  • [17]Banjoko IO, Adeyanju MM, Ademuyiwa O, Adebawo OO, Olalere RA, Kolawole MO, Adegbola IA, Adesanmi TA, Oladunjoye TO, Ogunnowo AA et al.. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats. Lipids Health Dis. 2012; 11:170. BioMed Central Full Text
  • [18]Rotimi SO, Ojo DA, Talabi OA, Balogun EA, Ademuyiwa O. Tissue dyslipidemia in Salmonella-infected rats treated with amoxillin and pefloxacin. Lipids Health Dis. 2012; 11:152. BioMed Central Full Text
  • [19]Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, Onunkwor OB, Balogun EA, Odukoya OO, Ademuyiwa O: Paraoxonase 1 activity in subchronic low-level inorganic arsenic exposure through drinking water. Environ Toxicol 2014.
  • [20]Folch J, Lees M, Sloane SGH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957; 226:497-509.
  • [21]Rose HG, Oklander M. Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res. 1965; 6:428-431.
  • [22]Rao AV, Ramakrishnan S. Indirect assessment of hydroxymethylglutaryl- CoA reductase (NADPH) activity in liver tissue. Clin Chem. 1975; 21(10):1523-1525.
  • [23]Ademuyiwa O, Elsenhans B, Forth W. Arsenic‐copper interaction in the kidney of the rat : influence of arsenic metabolites. Pharmacol Toxicol. 1996; 78:154-160.
  • [24]Vahter M. Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ Res. 1981; 25:286-293.
  • [25]Styblo M, Del Razo LM, LeCluyse EL, Hamilton GA, Wang C, Cullen WR, Thomas DJ. Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol. 1999; 12:560-565.
  • [26]Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol. 2006; 36:99-133.
  • [27]Dixon HBF. The biochemical action of arsonic acids, especially as phosphate analogues. Adv Inorg Chem. 1997; 44:191-227.
  • [28]Gonzalez MJ, Aguilar MV, Martinez Para MC. Gastrointestinal absorption of inorganic arsenic (V): the effect of concentration and interactions with phosphate and dichromate. Vet Hum Toxicol. 1995; 37:131-136.
  • [29]Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, Liu Y, Lujan HL, Carlo SE, Nielsen S, Rosen BP, Agre P, Mukhopadhyay R: Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. PNAS 106 (37): 15956–15960.
  • [30]Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ. The role of biomethylation in toxicity and carcinogenicity of arsenic. Environ Health Perspect. 2002; 110 Suppl 5:767-777.
  • [31]Naramandura H, Suzuki N, Iwata K, Hirano S, Suzuki KT. Arsenic metabolism and thioarsenicals in hamsters and rats. Chem Res Toxicol. 2007; 20:616-624.
  • [32]Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15:805-812.
  • [33]Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010; 90:207-258.
  • [34]Bharadwaj KG, Hiyama Y, Hu Y, Huggins LA, Ramakrishnan R, Abumrad NA, Shulman GI, Blaner WS, Goldberg IJ. Chylomicron- and VLDL-derived lipis enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem. 2010; 285(49):37976-37986.
  • [35]Nielsen LB, Veniant M, Boren J, Raabe M, Wong JS, Tam C, Flynn L, Vanni-Reyes T, Gunn MD, Goldberg IJ et al.. Genes for apoliporotein B and microsomal triglyceride transfer protein are expressed in the heart: evidence that the heart has the capacity to synthesise and secrete lipoproteins. Circul. 1998; 98:13-16.
  • [36]Postle AD. Phospholipidomics in health and disease. Eur J Lipid Sci Technol. 2009; 111:2-13.
  • [37]Walters JW, Anderson JL, Bittman R, Pack M, Farber SA. Visualisation of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid. Chem Biol. 2012; 19:913-925.
  • [38]Yokoyama M, Yagyu A, Hu Y, Seo T, Hirata K, Homma S, Goldberg IJ. Apolipoprotein B production reduces lipotoxic cardiomyopathy. Studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem. 2004; 279(6):4204-4211.
  • [39]Newsholme EA, Start C. Regulation in Metabolism. Chichester, UK: John Wiley and Sons; 1981. p. 195-246.
  • [40]Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002; 133:1-16.
  • [41]Kitchin KT, Ahmad S. Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett. 2003; 137(1–2):3-13.
  • [42]Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002; 110:331-336.
  • [43]Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurum J, Boldt MD, Parks EJ. Sources of fatty acid stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005; 115(5):1343-1351.
  • [44]Mermier P, Baker N. Flux of free fatty acids among host tissues, ascites fluid, and Ehrlich ascites carcinoma cells. J Lipid Res. 1974; 15(4):339-351.
  • [45]Lee J, Goldberg IJ. Lipoprotein lipase-derived fatty acids: physiology and dysfunction. Curr Hypertens Rep. 2007; 9:462-466.
  • [46]Pulinilkunnil T, Rodrigues B. Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease. Cardiovasc Res. 2006; 69:329-340.
  • [47]Saxena U, Witte LD, Goldberg IJ. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989; 264:4349-4355.
  • [48]Rader DJ. Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol. 2003; 92:42J-49J.
  • [49]Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilisation in isolated working rat hearts. J Biol Chem. 1991; 266:8162-8170.
  • [50]Stanley WC, Recchia FA, Lopascuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85:1093-1129.
  • [51]Swanton EM, Saggerson ED. Effects of adrenaline on triacylglycerol synthesis and turnover in ventricular myocytes from adult rats. Biochem J. 1997; 328:913-922.
  • [52]Nuotio IO, Raitakari OT, Porkka KV, Rasanen L, Moilanen T, Viikari JS. Associations between diet and the hyperapobetalipoproteinemia phenotype expression in children and young adults. The Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol. 1997; 17:820-825.
  • [53]Li WF, Sun CW, Cheng TJ, Chang KH, Chen CJ, Wang SL. Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan. Toxicol Appl Pharmacol. 2009; 236(2):246-253.
  • [54]Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014; 1841:919-933.
  • [55]Wang H, Eckel RH. What are lipoproteins doing in the brain? Trends Endocrinol Metab. 2014; 25:8-14.
  • [56]Rosado JL, Ronquillo D, Kodas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Caamaňo MC, Cebrián ME, Stoltzfus RJ. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect. 2007; 115(9):1371-1375.
  • [57]Ross IA, Boyle T, Johnson WD, Sprando RL, O’Donnell MW, Ruggles D, Kim CS: Free fatty acids profile of the fetal brain and the plasma, liver, brain and kidneys of pregnant rats treated with sodium arsenite at mid-organogenesis. Toxicol Ind Health 2010;26(10):657–666.
  • [58]Gesquiere L, Loreau N, Minnich A, Davignon J, Blache D. Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radic Biol Med. 1999; 27(1–2):134-145.
  • [59]Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005; 83(2):282-292.
  • [60]Kojima M, Masui T, Nemoto K, Degawa M. Lead nitrate induced development of hypercholesterolemia in rats: sterol independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicol Lett. 2004; 154:35-44.
  • [61]Botham KM, Mayes PA. Metabolism of acylglycerols and sphingolipids. In: Harpers illustrated biochemistry 27th Edition. Murray RK, Granner DK, Rodwell VW, editors. McGraw Hill Companies Inc, New York; 2006: p.209-216.
  • [62]El Hafidi M, Pérez I, Carrillo S, Cardoso G, Zamora J, Chavira R, Ba˜nos G. Effect of sex hormones on non-esterified fatty acids, intra-abdominal fat accumulation and hypertension induced by sucrose diet in male rats. Clin Exp Hypertens. 2006; 28:669-681.
  • [63]El Hafidi M, Valdez R, Ba˜nos G. Possible relationship between altered fatty acid composition of serum, platelets and aorta and hypertension induced by sugar feeding in rats. Clin Exp Hypertens. 2000; 22:99-108.
  • [64]Goodfreind TL, Egan BM. Nonesterified fatty acids in the pathogenesis of hypertension: theory and evidence. Prostaglandins Leukot Essent Fatty Acids. 1997; 57:57-63.
  • [65]Roszell BR, Tao J-Q, YU KJ, Gao L, Huang S, Ning Y, Feinstein SI, Vite CH, Bates SR. Pulmonary abnormalities in animal models due to niemann-pick type C1 (NPC1) or C2 (NPC2) disease. Plos One. 2013; 8(7): Article ID e67084
  • [66]Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta. 2013; 1831:612-625.
  文献评价指标  
  下载次数:131次 浏览次数:29次