期刊论文详细信息
BMC Developmental Biology
Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice
Joan T Richtsmeier4  Ethylin Wang Jabs5  Kristina Aldridge6  Neus Martínez-Abadías1  Theodore M Cole2  Susan M Motch Perrine3 
[1] Current address: CRG, Center for Genomic Regulation, Dr. Aiguader, 88, 08003 Barcelona, Spain;Department of Basic Medical Science, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64110, USA;Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA;Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD 21228, USA;Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
关键词: Apert syndrome;    Craniosynostosis;    Suture;    Skull growth;    Cranial development;    Fibroblast growth factor receptor signaling;   
Others  :  1160956
DOI  :  10.1186/1471-213X-14-8
 received in 2013-11-18, accepted in 2014-02-05,  发布年份 2014
PDF
【 摘 要 】

Background

Differences in cranial morphology arise due to changes in fundamental cell processes like migration, proliferation, differentiation and cell death driven by genetic programs. Signaling between fibroblast growth factors (FGFs) and their receptors (FGFRs) affect these processes during head development and mutations in FGFRs result in congenital diseases including FGFR-related craniosynostosis syndromes. Current research in model organisms focuses primarily on how these mutations change cell function local to sutures under the hypothesis that prematurely closing cranial sutures contribute to skull dysmorphogenesis. Though these studies have provided fundamentally important information contributing to the understanding of craniosynostosis conditions, knowledge of changes in cell function local to the sutures leave change in overall three-dimensional cranial morphology largely unexplained. Here we investigate growth of the skull in two inbred mouse models each carrying one of two gain-of-function mutations in FGFR2 on neighboring amino acids (S252W and P253R) that in humans cause Apert syndrome, one of the most severe FGFR-related craniosynostosis syndromes. We examine late embryonic skull development and suture patency in Fgfr2 Apert syndrome mice between embryonic day 17.5 and birth and quantify the effects of these mutations on 3D skull morphology, suture patency and growth.

Results

We show in mice what studies in humans can only infer: specific cranial growth deviations occur prenatally and worsen with time in organisms carrying these FGFR2 mutations. We demonstrate that: 1) distinct skull morphologies of each mutation group are established by E17.5; 2) cranial suture patency patterns differ between mice carrying these mutations and their unaffected littermates; 3) the prenatal skull grows differently in each mutation group; and 4) unique Fgfr2-related cranial morphologies are exacerbated by late embryonic growth patterns.

Conclusions

Our analysis of mutation-driven changes in cranial growth provides a previously missing piece of knowledge necessary for explaining variation in emergent cranial morphologies and may ultimately be helpful in managing human cases carrying these same mutations. This information is critical to the understanding of craniofacial development, disease and evolution and may contribute to the evaluation of incipient therapeutic strategies.

【 授权许可】

   
2014 Motch Perrine et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150412010331624.pdf 3126KB PDF download
Figure 9. 98KB Image download
Figure 8. 185KB Image download
Figure 7. 95KB Image download
Figure 6. 125KB Image download
Figure 5. 119KB Image download
Figure 4. 93KB Image download
Figure 3. 84KB Image download
Figure 2. 217KB Image download
Figure 1. 189KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Richtsmeier JT, Flaherty K: Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 2013, 125(4):469-489.
  • [2]Long FX: Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012, 13(1):27-38.
  • [3]Du X, Xie Y, Xian CJ, Chen L: Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 2012, 227(12):3731-43.
  • [4]Ornitz DM, Itoh N: Fibroblast growth factors. Genome Biol 2001, 2(3):1-12.
  • [5]Lajeunie E, Cameron R, El Ghouzzi V, de Parseval N, Journeau P, Gonzales M, Delezoide AL, Bonaventure J, Le Merrer M, Renier D: Clinical variability in patients with Apert’s syndrome. J Neurosurg 1999, 90(3):443-447.
  • [6]Park WJ, Theda C, Maestri NE, Meyers GA, Fryburg JS, Dufresne C, Cohen MM Jr, Jabs EW: Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 1995, 57(2):321-328.
  • [7]Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P, et al.: Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995, 9(2):165-172.
  • [8]Cohen MM Jr, MacLean RE: Craniosynostosis: Diagnosis, Evaluation, and Management. 2nd edition. New York: Oxford University Press; 2000.
  • [9]Cohen MM Jr, Kreiborg S: Growth pattern in the Apert syndrome. Am J Med Genet 1993, 47(5):617-623.
  • [10]Martinez-Abadias N, Motch SM, Pankratz TL, Wang Y, Aldridge K, Jabs EW, Richtsmeier JT: Tissue-specific responses to aberrant FGF signaling in complex head phenotypes. Dev Dyn 2013, 242(1):80-94.
  • [11]Opperman LA: Cranial sutures as intramembranous bone growth sites. Dev Dyn 2000, 219(4):472-485.
  • [12]Dufresne C, Richtsmeier J: Interaction of craniofacial dysmorphology, growth, and prediction of surgical outcome. J Craniofac Surg 1995, 6(4):270-281.
  • [13]Ornitz DM, Marie PJ: FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002, 16(12):1446-1465.
  • [14]Martinez-Abadias N, Holmes G, Pankratz T, Wang YL, Zhou XY, Jabs EW, Richtsmeier JT: From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome. Dis Model Mech 2013, 6(3):768-779.
  • [15]Percival C, Huang Y, Jabs EW, Li R, Richtsmeier JT: Bone volume and relative bone mineral density during early craniofacial osteogenesis in mice and the influence of the Fgfr2 P253R mutation. Dev Dyn 2014. in press
  • [16]Aldridge K, Hill CA, Austin JR, Percival C, Martinez-Abadias N, Neuberger T, Wang Y, Jabs EW, Richtsmeier JT: Brain phenotypes in two FGFR2 mouse models for Apert syndrome. Dev Dyn 2010, 239(3):987-997.
  • [17]Percival CJ, Wang YL, Zhou XY, Jabs EW, Richtsmeier JT: The effect of a Beare-Stevenson syndrome Fgfr2 Y394C mutation on early craniofacial bone volume and relative bone mineral density in mice. J Anat 2012, 221(5):434-442.
  • [18]Wang YL, Zhou XY, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, et al.: p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Investig 2012, 122(6):2153-2164.
  • [19]Darroch JN, Mosimann JE: Canonical and principal components of shape. Biometrika 1985, 72(2):241-252.
  • [20]Rao CR, Suryawanshi S: Statistical analysis of shape of objects based on landmark data. Proc Natl Acad Sci U S A 1996, 93(22):12132-12136.
  • [21]Jungers WL, Cole T III, Owsley DW: Multivariate-analysis of relative growth in the limb bones of Arikara Indians. Growth Dev Aging 1988, 52(2):103-107.
  • [22]Falsetti A, Jungers W, Cole TI: Morphometrics of the callitrichid forelimb: a case study in size and shape. Int J Primatol 1993, 14(4):552-572.
  • [23]Lele S, Richtsmeier JT: Euclidean distance matrix analysis: confidence intervals for form and growth differences. Am J Phys Anthropol 1995, 98(1):73-86.
  • [24]Lele SR, Richtsmeier JT: An invariant approach to statistical analysis of shapes. Boca Raton: Chapman and Hall/CRC; 2001.
  • [25]Lele SR, McCulloch CE: Invariance, identifiability, and morphometrics. J Am Stat Assoc 2002, 97(459):796-806.
  • [26]Martinez-Abadias N, Percival C, Aldridge K, Hill CA, Ryan T, Sirivunnabood S, Wang Y, Jabs EW, Richtsmeier JT: Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Dev Dyn 2010, 239(11):3058-3071.
  • [27]Wang Y, Xiao R, Yang F, Karim BO, Iacovelli AJ, Cai J, Lerner CP, Richtsmeier JT, Leszl JM, Hill CA, et al.: Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. Development 2005, 132(15):3537-3548.
  • [28]Wang Y, Sun M, Uhlhorn VL, Zhou X, Peter I, Martinez-Abadias N, Hill CA, Percival CJ, Richtsmeier JT, Huso DL, et al.: Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. BMC Dev Biol 2010, 10:22. BioMed Central Full Text
  • [29]Richtsmeier J, Lele S: A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biol Rev Camb Philos Soc 1993, 68:381-411.
  • [30]Johnson D, Wilkie AO: Craniosynostosis. Eur J Hum Genet 2011, 19(4):369-376.
  • [31]Slaney SF, Oldridge M, Hurst JA, MorrissKay GM, Hall CM, Poole MD, Wilkie AOM: Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet 1996, 58(5):923-932.
  • [32]von Gernet S, Golla A, Ehrenfels Y, Schuffenhauer S, Fairley JD: Genotype-phenotype analysis in Apert syndrome suggests opposite effects of the two recurrent mutations on syndactyly and outcome of craniofacial surgery. Clin Genet 2000, 57(2):137-139.
  • [33]Heuzé Y, Martínez-Abadías N, Stella J, Arnaud E, Collet C, García Fructuoso G, Alamar M, Lo L-J, Boyadjiev S, Richtsmeier J: Quantification of facial skeletal shape variation in FGFR-related craniosynostosis syndromes. Birth Defects Res A Clin Mol Teratol 2014. in press
  • [34]Kreiborg S, Cohen MM: Characteristics of the infant Apert skull and its subsequent development. J Craniofac Genet Dev Biol 1990, 10(4):399-410.
  • [35]Richtsmeier JT: Comparative study of normal, Crouzon, and Apert craniofacial morphology using finite element scaling analysis. Am J Phys Anthropol 1987, 74(4):473-493.
  • [36]Pruzansky S: Time - the fourth dimension in syndrome analysis applied to craniofacial malformations. Birth Defects Orig Artic Ser 1977, 13(3C):3-28.
  • [37]Hill CA, Martinez-Abadias N, Motch SM, Austin JR, Wang YL, Jabs EW, Richtsmeier JT, Aldridge K: Postnatal brain and skull growth in an Apert syndrome mouse model. Am J Med Genet A 2013, 161A(4):745-757.
  • [38]Virchow R: Über den Cretinismus, namentlich in Franken, und über pathologische Schädelformen. Verh Phys Med Ges Wurzburg 1851, 2:230.
  • [39]Jacob F: Evolution and tinkering. Science 1977, 196(4295):1161-1166.
  • [40]Herring SW: Sutures and craniosynostosis: a comparative, functional, and evolutionary perspective. In Craniosynstosis: Diagnosis, Evaluation and Management. Edited by Jr CM, MacLean RE. New York: Oxford Univeristy press; 2000:3-11.
  • [41]Sidor CA: Simplification as a trend in synapsid cranial evolution. Evolution 2001, 55(7):1419-1442.
  • [42]Holmes G, Basilico C: Mesodermal expression of Fgfr2(S252W) is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 2012, 368(2):283-293.
  • [43]Ting MC, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson RE Jr: EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 2009, 136(5):855-864.
  • [44]Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AO, Maxson RE Jr: Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 2006, 15(8):1319-1328.
  • [45]Cole T III: EDMAware: software for Euclidean distance matrix analysis. Kansas City, MO: University of Missouri-Kansas City School of Medicine; 2013.
  文献评价指标  
  下载次数:29次 浏览次数:2次