期刊论文详细信息
BMC Medical Genomics
MutaCYP: Classification of missense mutations in human cytochromes P450
Aleksey Porollo2  Kenneth Fechter1 
[1] Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA;Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
关键词: Evolutionary information;    Relative solvent accessibility;    Classification of missense mutations;    Machine learning based prediction;    Human CYP polymorphism;    Human CYP variants;   
Others  :  1090707
DOI  :  10.1186/1755-8794-7-47
 received in 2014-03-04, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Background

Cytochrome P450 monooxygenases (CYPs) represent a large and diverse family of enzymes involved in various biological processes in humans. Individual genome sequencing has revealed multiple mutations in human CYPs, and many missense mutations have been associated with variety of diseases. Since 3D structures are not resolved for most human CYPs, there is a need for a reliable sequence-based prediction that discriminates benign and disease causing mutations.

Methods

A new prediction method (MutaCYP) has been developed for scoring de novo missense mutations to have a deleterious effect. The method utilizes only five features, all of which are sequence-based: predicted relative solvent accessibility (RSA), variance of predicted RSA among the residues in close sequence proximity, Z-score of Shannon entropy for a given position, difference in similarity scores and weighted difference in size between wild type and new amino acids. The method is based on a single neural network.

Results

MutaCYP achieves MCC = 0.70, Q2 = 88.52%, Recall = 93.40% with Precision = 91.09%, and AUC = 0.909. Comparative evaluation with other existing methods indicates that MutaCYP outperforms SIFT and PolyPhen-2. Predictions by MutaCYP appear to be orthogonal to predictions by the evaluated methods. Potential issues on reliability of annotations of mutations in the existing databases are discussed.

Conclusions

A new accurate method, MutaCYP, for classification of missense mutations in human CYPs is presented. The prediction model consists of only five sequence-based features, including a real-valued predicted relative solvent accessibility. The method is publicly available at http://research.cchmc.org/MutaSense/ webcite.

【 授权许可】

   
2014 Fechter and Porollo; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128162803744.pdf 614KB PDF download
Figure 3. 119KB Image download
Figure 2. 71KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sono M, Roach MP, Coulter ED, Dawson JH: Heme-Containing Oxygenases. Chem Rev 1996, 96(7):2841-2888.
  • [2]Bernhardt R: Cytochromes P450 as versatile biocatalysts. J Biotechnol 2006, 124(1):128-145.
  • [3]Nebert DW, Wikvall K, Miller WL: Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013, 368(1612):20120431.
  • [4]Pikuleva IA, Waterman MR: Cytochromes P450: roles in diseases. J Biol Chem 2013, 288(24):17091-17098.
  • [5]Thier R, Bruning T, Roos PH, Rihs HP, Golka K, Ko Y, Bolt HM: Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health 2003, 206(3):149-171.
  • [6]Graham SE, Peterson JA: How similar are P450s and what can their differences teach us? Arch Biochem Biophys 1999, 369(1):24-29.
  • [7]Werck-Reichhart D, Feyereisen R: Cytochromes P450: a success story. Genome Biol 2000, 1(6):REVIEWS3003.
  • [8]Mestres J: Structure conservation in cytochromes P450. Proteins 2005, 58(3):596-609.
  • [9]Johnson EF, Stout CD: Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Commun 2005, 338(1):331-336.
  • [10]Sirim D, Widmann M, Wagner F, Pleiss J: Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct Biol 2010, 10:34.
  • [11]Robins T, Carlsson J, Sunnerhagen M, Wedell A, Persson B: Molecular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia. Mol Endocrinol 2006, 20(11):2946-2964.
  • [12]Crespi CL, Miller VP: The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 1997, 7(3):203-210.
  • [13]Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J: The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics 2007, 23(15):2015-2017.
  • [14]Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 2010, 38(Database issue):D237-243.
  • [15]Sim SC, Ingelman-Sundberg M: The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010, 4(4):278-281.
  • [16]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29(1):308-311.
  • [17]Yip YL, Famiglietti M, Gos A, Duek PD, David FP, Gateau A, Bairoch A: Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Hum Mutat 2008, 29(3):361-366.
  • [18]Thusberg J, Olatubosun A, Vihinen M: Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011, 32(4):358-368.
  • [19]Zhang Z, Miteva MA, Wang L, Alexov E: Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med 2012, 2012:805827.
  • [20]Luu TD, Rusu A, Walter V, Linard B, Poidevin L, Ripp R, Moulinier L, Muller J, Raffelsberger W, Wicker N, Lecompte O, Thompson JD, Poch O, Nguyen H: KD4v: Comprehensible Knowledge Discovery System for Missense Variant. Nucleic Acids Res 2012, 40(Web Server issue):W71-75.
  • [21]Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J: A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014, 46(3):310-315.
  • [22]Dasari S, Theis JD, Vrana JA, Zenka RM, Zimmermann MT, Kocher JP, Highsmith WE Jr, Kurtin PJ, Dogan A: Clinical Proteome Informatics Workbench Detects Pathogenic Mutations in Hereditary Amyloidoses. J Proteome Res 2014, 13(5):2352-2358.
  • [23]Ng PC, Henikoff S: Predicting deleterious amino acid substitutions. Genome Res 2001, 11(5):863-874.
  • [24]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods 2010, 7(4):248-249.
  • [25]Jiang Z, Dalton TP, Jin L, Wang B, Tsuneoka Y, Shertzer HG, Deka R, Nebert DW: Toward the evaluation of function in genetic variability: characterizing human SNP frequencies and establishing BAC-transgenic mice carrying the human CYP1A1_CYP1A2 locus. Hum Mutat 2005, 25(2):196-206.
  • [26]Zhou SF, Liu JP, Chowbay B: Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009, 41(2):89-295.
  • [27]Kisselev P, Schunck WH, Roots I, Schwarz D: Association of CYP1A1 polymorphisms with differential metabolic activation of 17beta-estradiol and estrone. Cancer Res 2005, 65(7):2972-2978.
  • [28]Schwarz D, Kisselev P, Chernogolov A, Schunck WH, Roots I: Human CYP1A1 variants lead to differential eicosapentaenoic acid metabolite patterns. Biochem Biophys Res Commun 2005, 336(3):779-783.
  • [29]Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, Tsaousidou M, Forlani S, Guyant-Marechal L, Fontaine B, Guimaraes J, Isidor B, Chazouilleres O, Wendum D, Grid D, Chevy F, Chinnery PF, Coutinho P, Azulay JP, Feki I, Mochel F, Wolf C, Mhiri C, Crosby A, Brice A, Stevanin G: CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain 2009, 132(Pt 6):1589-1600.
  • [30]Stiles AR, McDonald JG, Bauman DR, Russell DW: CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem 2009, 284(42):28485-28489.
  • [31]Zhao B, Lei L, Kagawa N, Sundaramoorthy M, Banerjee S, Nagy LD, Guengerich FP, Waterman MR: Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J Biol Chem 2012, 287(13):10613-10622.
  • [32]Bleicken C, Loidi L, Dhir V, Parajes S, Quinteiro C, Dominguez F, Grotzinger J, Sippell WG, Riepe FG, Arlt W, Krone N: Functional characterization of three CYP21A2 sequence variants (p.A265V, p.W302S, p.D322G) employing a yeast co-expression system. Hum Mutat 2009, 30(2):E443-450.
  • [33]Parajes S, Loidi L, Reisch N, Dhir V, Rose IT, Hampel R, Quinkler M, Conway GS, Castro-Feijoo L, Araujo-Vilar D, Pombo M, Dominguez F, Williams EL, Cole TR, Kirk JM, Kaminsky E, Rumsby G, Arlt W, Krone N: Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11{beta}-hydroxylase deficiency. J Clin Endocrinol Metab 2010, 95(2):779-788.
  • [34]Cui N, Xia W, Su H, Pang L, Jiang Y, Sun Y, Nie M, Xing X, Li M, Wang O, Yuan T, Chi Y, Hu Y, Liu H, Meng X, Zhou X: Novel mutations of CYP27B1 gene lead to reduced activity of 1alpha-hydroxylase in Chinese patients. Bone 2012, 51(3):563-569.
  • [35]Alzahrani AS, Zou M, Baitei EY, Alshaikh OM, Al-Rijjal RA, Meyer BF, Shi Y: A novel G102E mutation of CYP27B1 in a large family with vitamin D-dependent rickets type 1. J Clin Endocrinol Metab 2010, 95(9):4176-4183.
  • [36]Kitanaka S, Murayama A, Sakaki T, Inouye K, Seino Y, Fukumoto S, Shima M, Yukizane S, Takayanagi M, Niimi H, Takeyama K, Kato S: No enzyme activity of 25-hydroxyvitamin D(3) 1 alpha-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab 1999, 84(11):4111-4117.
  • [37]Porollo A, Meller J: Prediction-based fingerprints of protein-protein interactions. Proteins 2007, 66(3):630-645.
  • [38]Adamczak R, Porollo A, Meller J: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 2004, 56(4):753-767.
  • [39]TOOLDIAG - Pattern recognition toolbox. [http://sites.google.com/site/tooldiag/ webcite]
  • [40]Zell A, Mache N, Sommer T, Korb T: Recent Developments of the Snns Neural Network Simulator. P Soc Photo-Opt Ins 1991, 1469:708-718.
  • [41]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [42]Ferrer-Costa C, Orozco M, de la Cruz X: Sequence-based prediction of pathological mutations. Proteins 2004, 57(4):811-819.
  • [43]Chen H, Zhou HX: Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 2005, 33(10):3193-3199.
  • [44]Cao B, Porollo A, Adamczak R, Jarrell M, Meller J: Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics 2006, 22(3):303-309.
  • [45]Swaminathan K, Adamczak R, Porollo A, Meller J: Enhanced prediction of conformational flexibility and phosphorylation in proteins. Adv Exp Med Biol 2010, 680:307-319.
  • [46]Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB: In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 2008, 29(11):1327-1336.
  文献评价指标  
  下载次数:17次 浏览次数:5次