期刊论文详细信息
BMC Immunology
Multiple factors influence the contribution of individual immunoglobulin light chain genes to the naïve antibody repertoire
Marjorie A Shapiro1  Kathleen J Clark1  Antonina G Aydanian1  Sean P Fitzsimmons1 
[1] Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, OBP, CDER, FDA, 10903 New Hampshire Avenue, Silver Spring 20993, MD, USA
关键词: Tonic signaling;    Rodent;    Receptor editing;    Generation of diversity;    Antibodies;    B lymphocytes;   
Others  :  1077682
DOI  :  10.1186/s12865-014-0051-2
 received in 2013-12-05, accepted in 2014-10-17,  发布年份 2014
PDF
【 摘 要 】

Background

The naïve antibody repertoire is initially dependent upon the number of germline V(D)J genes and the ability of recombined heavy and light chains to pair. Individual VH and VL genes are not equally represented in naïve mature B cells, suggesting that positive and negative selection also shape the antibody repertoire. Among the three member murine Vκ10 L chain family, the Vκ10C gene is under-represented in the antibody repertoire. Although it is structurally functional and accessible to both transcriptional and recombination machinery, the Vκ10C promoter is inefficient in pre-B cell lines and productive Vκ10C rearrangements are lost as development progresses from pre-B cells through mature B cells. This study examined VH/Vκ10 pairing, promoter mutations, Vκ10 transcript levels and receptor editing as possible factors that are responsible for loss of productive Vκ10C rearrangements in developing B cells.

Results

We demonstrate that the loss of Vκ10C expression is not due to an inability to pair with H chains, but is likely due to a combination of other factors. Levels of mRNA are low in sorted pre-B cells and undetectable in B cells. Mutation of a single base in the three prime region of the Vκ10C promoter increases Vκ10C promoter function in pre-B cell lines. Pre-B and B cells harbor disproportionate levels of receptor-edited productive Vκ10C rearrangements.

Conclusions

Our findings suggest that the weak Vκ10C promoter initially limits the amount of available Vκ10C L chain for pairing with H chains, resulting in sub-threshold levels of cell surface B cell receptors, insufficient tonic signaling and subsequent receptor editing to limit the numbers of Vκ10C-expressing B cells emigrating from the bone marrow to the periphery.

【 授权许可】

   
2014 Fitzsimmons et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141114141956760.pdf 1280KB PDF download
Figure 5. 28KB Image download
Figure 4. 22KB Image download
Figure 3. 71KB Image download
Figure 2. 67KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Max EE, Maizel JV Jr, Leder P: The nucleotide sequence of a 5.5-kilobase DNA segment containing the mouse kappa immunoglobulin J and C region genes. J Biol Chem 1981, 256(10):5116-5120.
  • [2]Liu ZM, George-Raizen JB, Li S, Meyers KC, Chang MY, Garrard WT: Chromatin structural analyses of the mouse Igkappa gene locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer. J Biol Chem 2002, 277(36):32640-32649.
  • [3]A lymphocyte-specific enhancer in the mouse immunoglobulin kappa gene Nature 1984, 307(5946):80-82.
  • [4]Queen C, Baltimore D: Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 1983, 33(3):741-748.
  • [5]Queen C, Stafford J: Fine mapping of an immunoglobulin gene activator. Mol Cell Biol 1984, 4(6):1042-1049.
  • [6]Meyer KB, Neuberger MS: The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J 1989, 8(7):1959-1964.
  • [7]Schable KF, Thiebe R, Bensch A, Brensing-Kuppers J, Heim V, Kirschbaum T, Lamm R, Ohnrich M, Pourrajabi S, Roschenthaler F, Schwendinger J, Wichelhaus D, Zocher I, Zachau HG: Characteristics of the immunoglobulin Vkappa genes, pseudogenes, relics and orphons in the mouse genome. Eur J Immunol 1999, 29(7):2082-2086.
  • [8]Thiebe R, Schable KF, Bensch A, Brensing-Kuppers J, Heim V, Kirschbaum T, Mitlohner H, Ohnrich M, Pourrajabi S, Roschenthaler F, Schwendinger J, Wichelhaus D, Zocher I, Zachau HG: The variable genes and gene families of the mouse immunoglobulin kappa locus. Eur J Immunol 1999, 29(7):2072-2081.
  • [9]Brekke KM, Garrard WT: Assembly and analysis of the mouse immunoglobulin kappa gene sequence. Immunogenetics 2004, 56(7):490-505.
  • [10]Kaushik A, Schulze DH, Bona C, Kelsoe G: Murine V kappa gene expression does not follow the VH paradigm. J Exp Med 1989, 169(5):1859-1864.
  • [11]Teale JM, Morris EG: Comparison of V kappa gene family expression in adult and fetal B cells. J Immunol 1989, 143(8):2768-2772.
  • [12]Lawler AM, Kearney JF, Kuehl M, Gearhart PJ: Early rearrangements of genes encoding murine immunoglobulin kappa chains, unlike genes encoding heavy chains, use variable gene segments dispersed throughout the locus. Proc Natl Acad Sci U S A 1989, 86(17):6744-6747.
  • [13]Ramsden DA, Paige CJ, Wu GE: Kappa light chain rearrangement in mouse fetal liver. J Immunol 1994, 153(3):1150-1160.
  • [14]Li S, Garrard WT: The kinetics of V-J joining throughout 3.5 megabases of the mouse Ig kappa locus fit a constrained diffusion model of nuclear organization. FEBS Lett 2003, 536(1–3):125-129.
  • [15]Kalled SL, Brodeur PH: Utilization of V kappa families and V kappa exons. Implications for the available B cell repertoire. J Immunol 1991, 147(9):3194-3200.
  • [16]Aoki-Ota M, Torkamani A, Ota T, Schork N, Nemazee D: Skewed primary Igkappa repertoire and V-J joining in C57BL/6 mice: implications for recombination accessibility and receptor editing. J Immunol 2012, 188(5):2305-2315.
  • [17]Goldmit M, Ji Y, Skok J, Roldan E, Jung S, Cedar H, Bergman Y: Epigenetic ontogeny of the Igk locus during B cell development. Nat Immunol 2005, 6(2):198-203.
  • [18]Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H: Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002, 296(5565):158-162.
  • [19]Roldan E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA: Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005, 6(1):31-41.
  • [20]Schatz DG, Ji Y: Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011, 11(4):251-263.
  • [21]Sleckman BP, Gorman JR, Alt FW: Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Annu Rev Immunol 1996, 14:459-481.
  • [22]Fitzsimmons SP, Bernstein RM, Max EE, Skok JA, Shapiro MA: Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Ig kappa locus. J Immunol 2007, 179(8):5264-5273.
  • [23]Bevington S, Boyes J: Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J 2013, 32(10):1381-1392.
  • [24]McMurry MT, Krangel MS: A role for histone acetylation in the developmental regulation of VDJ recombination. Science 2000, 287(5452):495-498.
  • [25]Perkins EJ, Kee BL, Ramsden DA: Histone 3 lysine 4 methylation during the pre-B to immature B-cell transition. Nucleic Acids Res 2004, 32(6):1942-1947.
  • [26]Johnson K, Angelin-Duclos C, Park S, Calame KL: Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 2003, 23(7):2438-2450.
  • [27]Espinoza CR, Feeney AJ: The extent of histone acetylation correlates with the differential rearrangement frequency of individual VH genes in pro-B cells. J Immunol 2005, 175(10):6668-6675.
  • [28]Agata Y, Katakai T, Ye SK, Sugai M, Gonda H, Honjo T, Ikuta K, Shimizu A: Histone acetylation determines the developmentally regulated accessibility for T cell receptor gamma gene recombination. J Exp Med 2001, 193(7):873-880.
  • [29]McBlane F, Boyes J: Stimulation of V(D)J recombination by histone acetylation. Curr Biol 2000, 10(8):483-486.
  • [30]Hesse JE, Lieber MR, Mizuuchi K, Gellert M: V(D)J recombination: a functional definition of the joining signals. Genes Dev 1989, 3(7):1053-1061.
  • [31]Ramsden DA, Baetz K, Wu GE: Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res 1994, 22(10):1785-1796.
  • [32]Nadel B, Tang A, Lugo G, Love V, Escuro G, Feeney AJ: Decreased frequency of rearrangement due to the synergistic effect of nucleotide changes in the heptamer and nonamer of the recombination signal sequence of the V kappa gene A2b, which is associated with increased susceptibility of Navajos to Haemophilus influenzae type b disease. J Immunol 1998, 161(11):6068-6073.
  • [33]Buchanan KL, Smith EA, Dou S, Corcoran LM, Webb CF: Family-specific differences in transcription efficiency of Ig heavy chain promoters. J Immunol 1997, 159(3):1247-1254.
  • [34]Stiernholm BJ, Berinstein NL: Mutations in immunoglobulin V gene promoters may cause reduced germline transcription and diminished recombination frequencies. Ann N Y Acad Sci 1995, 764:116-120.
  • [35]Stiernholm NB, Berinstein NL: A mutated promoter of a human Ig V lambda gene segment is associated with reduced germ-line transcription and a low frequency of rearrangement. J Immunol 1995, 154(4):1748-1761.
  • [36]Casellas R, Shih TA, Kleinewietfeld M, Rakonjac J, Nemazee D, Rajewsky K, Nussenzweig MC: Contribution of receptor editing to the antibody repertoire. Science 2001, 291(5508):1541-1544.
  • [37]ten Boekel E, Melchers F, Rolink AG: Changes in the V(H) gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor. Immunity 1997, 7(3):357-368.
  • [38]Jayaram N, Bhowmick P, Martin AC: Germline VH/VL pairing in antibodies. Protein Eng Des Sel 2012, 25(10):523-529.
  • [39]Fitzsimmons SP, Clark KJ, Mostowski HS, Shapiro MA: Underutilization of the V kappa 10C gene in the B cell repertoire is due to the loss of productive VJ rearrangements during B cell development. J Immunol 2000, 165(2):852-859.
  • [40]Fitzsimmons SP, Rotz BT, Shapiro MA: Asymmetric contribution to Ig repertoire diversity by V kappa exons: differences in the utilization of V kappa 10 exons. J Immunol 1998, 161(5):2290-2300.
  • [41]de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruine AP, Arends JW, Hoogenboom HR: A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 1999, 274(26):18218-18230.
  • [42]Amersdorfer P, Wong C, Chen S, Smith T, Deshpande S, Sheridan R, Finnern R, Marks JD: Molecular characterization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries. Infect Immun 1997, 65(9):3743-3752.
  • [43]Retter MW, Nemazee D: Receptor editing occurs frequently during normal B cell development. J Exp Med 1998, 188(7):1231-1238.
  • [44]Ye J, Ma N, Madden TL, Ostell JM: IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013, 41(Web Server issue):W34-W40.
  • [45]Retter I, Chevillard C, Scharfe M, Conrad A, Hafner M, Im TH, Ludewig M, Nordsiek G, Severitt S, Thies S, Mauhar A, Blocker H, Muller W, Riblet R: Sequence and characterization of the Ig heavy chain constant and partial variable region of the mouse strain 129S1. J Immunol 2007, 179(4):2419-2427.
  • [46]Shapiro MA, Weigert M: How immunoglobulin V kappa genes rearrange. J Immunol 1987, 139(11):3834-3839.
  • [47]Lu L, Osmond DG: Apoptosis during B lymphopoiesis in mouse bone marrow. J Immunol 1997, 158(11):5136-5145.
  • [48]Keren Z, Diamant E, Ostrovsky O, Bengal E, Melamed D: Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J Biol Chem 2004, 279(14):13418-13424.
  • [49]Monroe JG: ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006, 6(4):283-294.
  • [50]Peng C, Eckhardt LA: Role of the Igh intronic enhancer Emu in clonal selection at the pre-B to immature B cell transition. J Immunol 2013, 191(8):4399-4411.
  • [51]Rowland SL, DePersis CL, Torres RM, Pelanda R: Ras activation of Erk restores impaired tonic BCR signaling and rescues immature B cell differentiation. J Exp Med 2010, 207(3):607-621.
  • [52]Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL, Liu J, Shinton SA, Otipoby KL, Rodine PR, Vegoe AL, Kraus M, Hardy RR, Schlissel MS, Rajewsky K, Behrens TW: Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol 2005, 3(3):e82.
  • [53]Sanchez P, Crain-Denoyelle AM, Daras P, Gendron MC, Kanellopoulos-Langevin C: The level of expression of mu heavy chain modifies the composition of peripheral B cell subpopulations. Int Immunol 2000, 12(10):1459-1466.
  • [54]Heltemes LM, Manser T: Level of B cell antigen receptor surface expression influences both positive and negative selection of B cells during primary development. J Immunol 2002, 169(3):1283-1292.
  • [55]Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K: B cell receptor signal strength determines B cell fate. Nat Immunol 2004, 5(3):317-327.
  • [56]Xing Y, Li W, Lin Y, Fu M, Li CX, Zhang P, Liang L, Wang G, Gao TW, Han H, Liu YF: The influence of BCR density on the differentiation of natural poly-reactive B cells begins at an early stage of B cell development. Mol Immunol 2009, 46(6):1120-1128.
  • [57]Shen S, Manser T: Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing. J Immunol 2012, 188(1):47-56.
  • [58]Ramsey LB, Vegoe AL, Miller AT, Cooke MP, Farrar MA: Tonic BCR signaling represses receptor editing via Raf- and calcium-dependent signaling pathways. Immunol Lett 2011, 135(1–2):74-77.
  • [59]Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, Hardy RR, Hippen KL, Farrar MA, Behrens TW: B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. J Immunol 2008, 180(7):4728-4741.
  • [60]Ait-Azzouzene D, Gavin AL, Skog P, Duong B, Nemazee D: Effect of cell:cell competition and BAFF expression on peripheral B cell tolerance and B-1 cell survival in transgenic mice expressing a low level of Igkappa-reactive macroself antigen. Eur J Immunol 2006, 36(4):985-996.
  • [61]Ota T, Ota M, Duong BH, Gavin AL, Nemazee D: Liver-expressed Igkappa superantigen induces tolerance of polyclonal B cells by clonal deletion not kappa to lambda receptor editing. J Exp Med 2011, 208(3):617-629.
  • [62]Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC: Identification of anergic B cells within a wild-type repertoire. Immunity 2006, 25(6):953-962.
  文献评价指标  
  下载次数:46次 浏览次数:24次