| BMC Systems Biology | |
| COBRApy: COnstraints-Based Reconstruction and Analysis for Python | |
| Daniel R Hyduke1  Bernhard O Palsson2  Joshua A Lerman2  Ali Ebrahim2  | |
| [1] Biological Engineering Department, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA;Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC0412, La Jolla, 92093-0412, CA, USA | |
| 关键词: Constraint-based modeling; Gene expression; Metabolism; Network reconstruction; Genome-scale; | |
| Others : 1142465 DOI : 10.1186/1752-0509-7-74 |
|
| received in 2012-08-07, accepted in 2013-08-02, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software.
Results
Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes.
Conclusion
COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets.
Availability
http://opencobra.sourceforge.net/ webcite
【 授权许可】
2013 Ebrahim et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150328065259774.pdf | 271KB | ||
| Figure 2. | 33KB | Image | |
| Figure 1. | 53KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008, 26:659-667.
- [2]Kim IK, Roldao A, Siewers V, Nielsen J: A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 2012, 12:228-248.
- [3]Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP: Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 2003, 100:15522-15527.
- [4]Hyduke DR, Jarboe LR, Tran LM, Chou KJ, Liao JC: Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci USA 2007, 104:8484-8489.
- [5]Tran LM, Hyduke DR, Liao JC: Trimming of mammalian transcriptional networks using network component analysis. BMC Bioinforma 2010, 11:511. BioMed Central Full Text
- [6]Covert MW, Palsson BO: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 2002, 277:28058-28064.
- [7]Gianchandani EP, Joyce AR, Palsson BO, Papin JA: Functional states of the genome-scale Escherichia coli transcriptional regulatory system. PLoS Comput Biol 2009, 5:e1000403.
- [8]Thiele I, Jamshidi N, Fleming RM, Palsson BO: Genome-scale reconstruction of Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol 2009, 5:e1000312.
- [9]Hyduke DR, Palsson BO: Towards genome-scale signalling-network reconstructions. Nat Rev Genet 2010, 11:297-307.
- [10]Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, Schrimpe-Rutledge AC, Smith RD, Adkins JN, Zengler K, Palsson BO: In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 2012, 3:929.
- [11]Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, Barabasi AL, Barabasi AL, Boros LG, Oltvai ZN: Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst Biol 2008, 2:7. BioMed Central Full Text
- [12]Henry CS, Broadbelt LJ, Hatzimanikatis V: Thermodynamics-based metabolic flux analysis. Biophys J 2007, 92:1792-1805.
- [13]Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muniz-Rascado L, Martinez-Flores I, Salgado H, Bonavides-Martinez C, Abreu-Goodger C, Rodriguez-Penagos C, Miranda-Rios J, Morett E, Merino E, Huerta AM, Trevino-Quintanilla L, Collado-Vides J: RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 2008, 36:D120-D124.
- [14]Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE: Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009, 5:e1000489.
- [15]Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IP, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 2011, 477:225-228.
- [16]Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO: Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 2012, 8:558.
- [17]Hyduke DR, Lewis NE, Palsson BO: Analysis of omics data with genome-scale models of metabolism. Mol Biosyst 2013, 9:167-174.
- [18]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264-276.
- [19]Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc 2011, 6:1290-1307.
- [20]Medema MH, van Raaphorst R, Takano E, Breitling R: Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 2012, 10:191-202.
- [21]Hucka M, Finney A, Bornstein BJ, Keating SM, Shapiro BE, Matthews J, Kovitz BL, Schilstra MJ, Funahashi A, Doyle JC, Kitano H: Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst Biol (Stevenage) 2004, 1:41-53.
- [22]Patil KR, Nielsen J: Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA 2005, 102:2685-2689.
- [23]Lakshmanan M, Koh G, Chung BK, Lee DY: Software applications for flux balance analysis. Brief Bioinform 2012.
- [24]Klamt S, von Kamp A: An application programming interface for Cell NetAnalyzer. Biosystems 2011, 105:162-168.
- [25]Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhutter HG: FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinforma 2011, 12:28. BioMed Central Full Text
- [26]Olivier BG, Rohwer JM, Hofmeyr JH: Modelling cellular systems with PySCeS. Bioinformatics 2005, 21:560-561.
- [27]Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J: The RAVEN toolbox and its use for generating a genome-scale metabolic model for penicillium chrysogenum. PLoS Comput Biol 2013, 9:e1002980.
- [28]Wright J, Wagner A: The systems biology research tool: evolvable open-source software. BMC Syst Biol 2008, 2:55. BioMed Central Full Text
- [29]The openCOBRA Project. http://opencobra.sourceforge.net webcite
- [30]Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK, Bazzani S, Charusanti P, Chen FC, Fleming RM, Hsiung CA, De Keersmaecker SC, Liao YC, Marchal K, Mo ML, Ozdemir E, Raghunathan A, Reed JL, Shin SI, Sigurbjornsdottir S, Steinmann J, Sudarsan S, Swainston N, Thijs IM, Zengler K, Palsson BO, Adkins JN, Bumann D: A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol 2011, 5:8. BioMed Central Full Text
- [31]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO: A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol 2011, 7:535.
- [32]Bornstein BJ, Keating SM, Jouraku A, Hucka M: LibSBML: an API library for SBML. Bioinformatics 2008, 24:880-881.
- [33]Henry CS, Dejongh M, Best AA, Frybarger PM, Linsay B, Stevens RL: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28:977-982.
- [34]Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C: BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 2010, 4:92. BioMed Central Full Text
- [35]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 28:245-248.
- [36]Beuzon CR, Banks G, Deiwick J, Hensel M, Holden DW: pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol Microbiol 1999, 33:806-816.
- [37]Schaechter M, Maaloe O, Kjeldgaard NO: Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 1958, 19:592-606.
- [38]Pramanik J, Keasling JD: Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 1997, 56:398-421.
- [39]Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84:647-657.
- [40]Schellenberger J, Lewis NE, Palsson BO: Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 2011, 100:544-553.
- [41]Parallel Python. http://parallelpython.com webcite
- [42]mlabwrap. http://mlabwrap.sourceforge.net webcite
- [43]Lewis NE, Nagarajan H, Palsson BO: Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 2012, 10:291-305.
- [44]GLPK. http://www.gnu.org/software/glpk webcite
- [45]PyGLPK (not python-glpk). http://www.tfinley.net/software/pyglpk webcite
- [46]SciPy / NumPy. http://scipy.org webcite
- [47]Drager A, Rodriguez N, Dumousseau M, Dorr A, Wrzodek C, Le Novere N, Zell A, Hucka M: JSBML: a flexible Java library for working with SBML. Bioinformatics 2011, 27:2167-2168.
- [48]GLPK for Java. http://glpk-java.sourceforge.net webcite
PDF