期刊论文详细信息
BMC Neuroscience
Mice do not require auditory input for the normal development of their ultrasonic vocalizations
Julia Fischer1  Nicola Strenzke3  Ludwig Ehrenreich4  Katharina Westekemper4  Ellen Reisinger2  Kurt Hammerschmidt4 
[1] Courant Research Centre 'Evolution of Social Behaviour', University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany;Molecular Biology of Cochlear Neurotransmission Group, University Medical Center Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany;Department of Otolaryngology, Auditory Systems Physiology Group, University Medical Center Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany;Cognitive Ethology Lab, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
关键词: Vocal learning;    Speech;    Otoferlin;    Ontogeny;    Mice;    Language;    Evolution;    DFNB9;   
Others  :  1170748
DOI  :  10.1186/1471-2202-13-40
 received in 2012-01-22, accepted in 2012-04-25,  发布年份 2012
PDF
【 摘 要 】

Background

Transgenic mice have become an important tool to elucidate the genetic foundation of the human language faculty. While learning is an essential prerequisite for the acquisition of human speech, it is still a matter of debate whether auditory learning plays any role in the development of species-specific vocalizations in mice. To study the influence of auditory input on call development, we compared the occurrence and structure of ultrasonic vocalizations from deaf otoferlin-knockout mice, a model for human deafness DFNB9, to those of hearing wild-type and heterozygous littermates.

Results

We found that the occurrence and structure of ultrasonic vocalizations recorded from deaf otoferlin-knockout mice and hearing wild-type and heterozygous littermates do not differ. Isolation calls from 16 deaf and 15 hearing pups show the same ontogenetic development in terms of the usage and structure of their vocalizations as their hearing conspecifics. Similarly, adult courtship 'songs' produced by 12 deaf and 16 hearing males did not differ in the latency to call, rhythm of calling or acoustic structure.

Conclusion

The results indicate that auditory experience is not a prerequisite for the development of species-specific vocalizations in mice. Thus, mouse models are of only limited suitability to study the evolution of vocal learning, a crucial component in the development of human speech. Nevertheless, ultrasonic vocalizations of mice constitute a valuable readout in studies of the genetic foundations of social and communicative behavior.

【 授权许可】

   
2012 Hammerschmidt et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417025000680.pdf 1127KB PDF download
Figure 4. 32KB Image download
Figure 3. 49KB Image download
Figure 2. 40KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Fischer J: Nothing to talk about? On the linguistic abilities of nonhuman primates (and some other animal species). In Homo Novus - a human without illusions. Edited by Frey U, Willführ K, Störmer. New York: Springer; 2010:35-48.
  • [2]Fitch WT: The evolution of language. Cambridge: Cambridge University Press; 2010.
  • [3]Bishop DVM: What can developmental language impairment tell us about the genetic basis of syntax? In Biological foundations and origin of syntax. Edited by Bickerton D, Szathmary E. Cambridge: MIT University Press; 2009:185-204.
  • [4]Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, et al.: A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 2009, 137:961-971.
  • [5]Scattoni ML, Crawley J, Ricceri L: Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev 2009, 33:508-515.
  • [6]Holy TE, Guo Z: Ultrasonic songs of male mice. PLos Biol 2005, 3:e386.
  • [7]Kikusui T, Nakanishi K, Nakagawa R, Nagasawa M, Mogi K, Okanoya K: Cross fostering experiments suggest that mice songs are innate. PLoS One 2011, 6:e17721.
  • [8]Grimsley JM, Monaghan JJ, Wenstrup JJ: Development of social vocalizations in mice. PLoS One 2011, 6:e17460.
  • [9]Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul I, et al.: Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006, 127:277-289.
  • [10]Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, et al.: Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 2010, 13:869-876.
  • [11]Ehret G: Auditory processing and perception of ultrasound in house mice. In Advances in Vertebrate Neurethology. Edited by Ewert JP, Capranica RR, Ingle DJ. New York: Plenum Press; 1983:911-918.
  • [12]Ehret G: Infant rodent ultrasounds - a gate to the understanding of sound communication. Behav Genet 2005, 35:19-29.
  • [13]Janik VM, Slater PJ: The different roles of social learning in vocal communication. Anim Behav 2000, 60:1-11.
  • [14]Hammerschmidt K, Fischer J: Constraints in primate vocal production. In The Evolution of Communicative Creativity: From Fixed Signals to Contextual Flexibility. Edited by Griebel U, Oller K. Cambridge: The MIT Press; 2008:93-119.
  • [15]Poole JH, Tyack PL, Stoeger-Horwath AS, StephanieWatwood SW: Elephants are capable of vocal learning. Nature 2005, 434:455-456.
  • [16]Sales GD, Smith JC: Comparative studies of the ultrasonic calls of infant murid rodents. Devolopmental Psychobiology 1978, 11:595-619.
  • [17]Hahn ME, et al.: Genetic and developmental influences on infant mouse ultrasonic calling. II. Developmental patterns in the calls of mice 2-12 days of age. Behav Genet 1998, 28:315-325.
  • [18]Riede T, Arcadi AC, Owren MJ: Nonlinear acoustics in pant hoots and screams of common chimpanzees (Pan troglodytes): Vocalizing at the edge. J Acoust Soc Am 2007, 121:1758-1767.
  • [19]Scattoni ML, Gandhy SU, Ricceri L, Crawley JN: Unusual repertoire of vocalizations in the BTBR T plus tf/J mouse model of autism. Plos One 2008, 3:e3067.
  • [20]Groszer M, Keays DA, Deacon RMJ, et al.: Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 2008, 18:354-362.
  • [21]Gaub S, Groszer M, Fisher SE, Ehret G: The structure of innate vocalizations in Foxp2-deficientmouse pups. Genes Brain Behav 2010, 9:390-401.
  • [22]Nyby JG: Auditory Communication among adults. In Handbook of mouse auditory research: from behavior to molecular biology. Edited by Williott JF. Boca Raton, FL: CRC Press; 2001:3-18.
  • [23]Guo Z, Holy TE: Sex selectivity of mouse ultrasonic songs. Chem Senses 2007, 32:463-473.
  • [24]Musolf K, Hoffmann F, Penn DJ: Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Anim Behav 2009, 79:757-764.
  • [25]Thinh VN, Hallam C, Roos C, Hammerschmidt K: Concordance between vocal and genetic diversity in crested gibbons. BMC Evol Biol 2011, 11:36.
  • [26]Naguib M, Hammerschmidt K, Wirth J: Microgeographic variation, habitat Effects and individual signature cues in calls of Chiffchaffs Phylloscopus collybita canarensis. Ethology 2001, 107:341-355.
  • [27]Bolhuis JJ, Gahr M: Neural mechanisms of birdsong memory. Nature Rev Neurosci 2006, 7:347-357.
  • [28]Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, et al.: Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA 2008, 105:1710-1715.
  • [29]Reisinger E, Bresee C, Neef J, Nair R, Reuter K, Bulankina A, et al.: Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J Neurosci 2011, 31:4886-4895.
  文献评价指标  
  下载次数:54次 浏览次数:49次