期刊论文详细信息
BMC Research Notes
Exploiting EST databases for the development and characterisation of 3425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses
Ajoy K Roy2  Shiksha Shrivastava2  Sushil Solomon1  Radha Jain1  Amaresh Chandra1 
[1] Division of Plant Physiology and Biochemistry, Indian Institute of Sugarcane Research, Rae Bareli Road, 226002, Lucknow, Uttar Pradesh, India;Indian Grassland and Fodder Research Institute, Gwalior Road, 284003, Jhansi, Uttar Pradesh, India
关键词: Gene-tagged markers;    Gene annotation;    Oat;    Tropical grasses;    Sugarcane;    Conserved-intron scanning primers;   
Others  :  1144807
DOI  :  10.1186/1756-0500-6-47
 received in 2012-09-24, accepted in 2013-01-30,  发布年份 2013
PDF
【 摘 要 】

Background

Sugarcane is an important cash crop, providing 70% of the global raw sugar as well as raw material for biofuel production. Genetic analysis is hindered in sugarcane because of its large and complex polyploid genome and lack of sufficiently informative gene-tagged markers. Modern genomics has produced large amount of ESTs, which can be exploited to develop molecular markers based on comparative analysis with EST datasets of related crops and whole rice genome sequence, and accentuate their cross-technical functionality in orphan crops like tropical grasses.

Findings

Utilising 246,180 Saccharum officinarum EST sequences vis-à-vis its comparative analysis with ESTs of sorghum and barley and the whole rice genome sequence, we have developed 3425 novel gene-tagged markers — namely, conserved-intron scanning primers (CISP) — using the web program GeMprospector. Rice orthologue annotation results indicated homology of 1096 sequences with expressed proteins, 491 with hypothetical proteins. The remaining 1838 were miscellaneous in nature. A total of 367 primer-pairs were tested in diverse panel of samples. The data indicate amplification of 41% polymorphic bands leading to 0.52 PIC and 3.50 MI with a set of sugarcane varieties and Saccharum species. In addition, a moderate technical functionality of a set of such markers with orphan tropical grasses (22%) and fodder cum cereal oat (33%) is observed.

Conclusions

Developed gene-tagged CISP markers exhibited considerable technical functionality with varieties of sugarcane and unexplored species of tropical grasses. These markers would thus be particularly useful in identifying the economical traits in sugarcane and developing conservation strategies for orphan tropical grasses.

【 授权许可】

   
2013 Chandra et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331021337600.pdf 708KB PDF download
Figure 4. 19KB Image download
Figure 3. 53KB Image download
Figure 2. 26KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR: Sugarcane biotechnology: the challenge and opportunities. In Vitro Cellul Dev Biol-Plant 2005, 41:345-363.
  • [2]Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T: Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 2010, 10:251. BioMed Central Full Text
  • [3]Grivet L, Arruda P: Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 2002, 5:122-127.
  • [4]Casu RE, Manners JM, Bonnett GD, Jackson PA, McIntyre CL, Dunne R, Chapman SC, Rae AL, Grof CPL: Genomics approaches for the identification of genes determining important traits in sugarcane. Field Crop Res 2005, 92:137-147.
  • [5]Cordeiro GM, Taylor GO, Henry RJ: Characterization of microsatellite markers from sugarcane (Saccharum spp.) a highly polyploid species. Plant Sci 2000, 155:161-168.
  • [6]Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, de Souza AP: Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 2004, 47:795-804.
  • [7]Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, de Souza AP: Characterization of novel sugarcane expressed sequence tag microsatellite and their comparison with genomic SSRs. Plant Breed 2006, 125:378-384.
  • [8]Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AA, Souza AP: Characterization of new polymorphic functional markers for sugarcane. Genome 2009, 52:191-209.
  • [9]Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T: Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 2009, 118:327-338.
  • [10]Lu YH, D’Hont A, Walker DJT, Rao PS, Feldmann P, Glaszmann JD: Relationships among ancestoral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 1994, 78:7-18.
  • [11]Selvi A, Nair NV, Balasundaram N, Mohapatra T: Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 2003, 46:394-403.
  • [12]Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T: Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 2005, 45:1750-1757.
  • [13]Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T: AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genet Resour Crop Evol 2006, 53:831-842.
  • [14]Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN: Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 2002, 127:219-225.
  • [15]Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B: Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 2006, 114:155-164.
  • [16]Chandra A, Saxena R, Roy AK, Pathak PS: Estimation of genetic variation in Dichanthium genotypes by RAPD technique. Trop Grasslands 2004, 38:245-252.
  • [17]Chandra A, Saxena R, Roy AK: Polymorphism and genotype-specific markers for Dichanthium identified by random amplified polymorphic DNA. Genet Resour Crop Evol 2006, 53:1521-1529.
  • [18]Saxena R, Chandra A: Isozyme, ISSR and RAPD profiling of marvel grass (Dichanthium annulatum Forsk.) genotypes collected from grasslands and open fields of drier regions. J Environ Biol 2010, 31:883-890.
  • [19]Chandra A, Roy AK, Kumar S: Molecular techniques for improvement of forage crops. Range Mgmt Agroforestry 2010, 31:87-96.
  • [20]Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ: Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 2001, 160:1115-1123.
  • [21]IRGSP: The map based sequence of rice genome. Nature 2005, 436:793-800.
  • [22]Schnable PS, Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto , Ochoa K, Jackson SM: The B73 maize genome: complexity, diversity and dynamics. Science 2009, 326:1112-1115.
  • [23]Paterson AH, Bowers JE, Bruggmann R, Inna Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551-556.
  • [24]Cunff LL, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A: Diploid/Polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n 12x 115). Genetics 2008, 180:649-660.
  • [25]Quax-Jeuken Y, Quax W, van Rens G, Khan PM, Bloemendal H: Complete structure of the alpha B-crystallin gene conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proc Natl Acad Sci USA 1985, 82:5819-5823.
  • [26]Fredslund J, Madsen LH, Hougaard BK, Sandal N, Stougaard J, Bertioli D, Schauser L: GeMprospector-online design of cross-species genetic marker candidates in legumes and grasses. Nucleic Acids Res 2006, 34:670-675.
  • [27]Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH: A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 2006, 140:1183-1191.
  • [28]Zeid M, Yu JK, Goldowitz I, Dentond ME, Costich DE, Jayasuriya CT, Saha M, Elshire R, Benscher D, Breseghello F, Munkvold J, Varshney RK, Belay G, Sorrells ME: Cross-amplification of EST-derived markers among 16 grass species. Field Crop Res 2010, 118:28-35.
  • [29]Yadav OP, Mitchell SE, Fulton TM, Kresovich S: Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. J SAT Agricul Res 2008, 6:1-4.
  • [30]Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L: A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 2006, 7:207. BioMed Central Full Text
  • [31]Suhail Khan M, Yadava S, Srivastava S, Swapna M, Chandra A, Singh RK: Development and utilisation of conserved-intron scanning marker in sugarcane. Australian J Bot 2011, 59:38-45.
  • [32]Daniels J, Roach BT: Taxonomy and evolution. In Sugarcane improvement through breeding. Edited by Heintz DJ. Amsterdam: Elsevier Press; 1987:7.
  • [33]Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus 1990, 12:13-14.
  • [34]Iqbal J, Aziz N, Saeed NA, Zafar Y, Malik A: Genetic diversity evolution of some elite cotton verities by RAPD analysis. Theor Appl Genet 1997, 94:139-144.
  • [35]Roldan-Ruize I, Calsyn E, Gilliand TJ, Coll R, Vaneijk MJT, Loose De M: Estimating genetic conformity between related ryegrass (Lolium) varieties. 2. AFLP characterization. Mole Breed 2000, 6:593-602.
  • [36]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A: The comparison of RFLP, RAPD, AFLP and SSR (microsatellites) marker for germplasm analysis. Mole Breed 1996, 2:225-238.
  • [37]Rohlf FJ: NTSYS-pc. numerical taxonomy and multivariate analysis system. Setauket, NY: Version 2.0. Applies Biostatistics Inc; 1998.
  • [38]Yap I, Nelson RJ: Winboot. a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. Manila, Philippines: IRRI Discussion paper series no. 14. International Rice Research Institute; 1996.
  • [39]Butterfield MK, Rutherford RK, Carson DL, Huckett BI: Application of gene discovery to varietal improvement in sugarcane. South African J Bot 2004, 70:167-172.
  • [40]Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J: A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 2002, 14:525-535.
  • [41]Wei H, Fu Y, Arora R: Intron-flanking EST–PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 2005, 111:1347-1356.
  • [42]Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun J-H, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR: A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 2004, 166:1463-1502.
  文献评价指标  
  下载次数:58次 浏览次数:19次