期刊论文详细信息
BMC Genomics
Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming
Burton H Bluhm2  Tesfaye Mengiste1  Hua Tang1  Bemnet Mengesha1  Jonathon E Smith2 
[1] Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA;Department of Plant Pathology, University of Arkansas Division of Agriculture, 217 Plant Sciences, Fayetteville, AR 72701, USA
关键词: Phytoalexins;    Botrydial;    Necrotrophic pathogenesis;   
Others  :  1217297
DOI  :  10.1186/1471-2164-15-334
 received in 2013-08-23, accepted in 2014-04-25,  发布年份 2014
PDF
【 摘 要 】

Background

Tomato (Solanum lycopersicum), one of the world’s most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea.

Results

Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites.

Conclusions

In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.

【 授权许可】

   
2014 Smith et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706023428650.pdf 1798KB PDF download
Figure 9. 113KB Image download
Figure 8. 105KB Image download
Figure 7. 167KB Image download
Figure 6. 97KB Image download
Figure 5. 98KB Image download
Figure 4. 98KB Image download
Figure 3. 98KB Image download
Figure 2. 117KB Image download
Figure 1. 131KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Divon HH, Fluhr R: Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett 2007, 266(1):65-74.
  • [2]Mendgen K, Hahn M: Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 2002, 7(8):352-356.
  • [3]Perfect SE, Green JR: Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2001, 2(2):101-108.
  • [4]van Kan JAL: Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 2006, 11(5):247-253.
  • [5]Greenberg JT: Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:525-545.
  • [6]Govrin EM, Levine A: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 2000, 10(13):751-757.
  • [7]Glazebrook J: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005, 43:205-227.
  • [8]Mengiste T: Plant Immunity to Necrotrophs. Annu Rev Phytopathol 2012, 50:267-294.
  • [9]Schulze-Lefert P, Panstruga R: Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 2003, 41:641-667.
  • [10]Dodds PN, Rafiqi M, Gan PHP, Hardham AR, Jones DA, Ellis JG: Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytol 2009, 183(4):993-999.
  • [11]Laluk K, Mengiste T: Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book 2010, 8:e0136.
  • [12]Friesen TL, Faris JD, Solomon PS, Oliver RP: Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 2008, 10(7):1421-1428.
  • [13]Jarvis WR: Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Monograph, Research Branch Canada Department of Agriculture 1977.
  • [14]Genescope http://www.cns.fr/spip/Botrytis-cinerea-estimated-losses.html webcite
  • [15]Colmenares AJ, Aleu J, Duran-Patron R, Collado IG, Hernandez-Galan R: The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 2002, 28(5):997-1005.
  • [16]Cutler HG, Parker SR, Ross SA, Crumley FG, Schreiner PR: Homobotcinolide: a biologically active natural homolog of botcinolide from Botrytis cinerea. Biosci Biotechnol Biochem 1996, 60(4):656-658.
  • [17]Choquer M, Fournier E, Kunz C, Levis C, Pradier J-M, Simon A, Viaud M: Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 2007, 277(1):1-10.
  • [18]Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL: Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 2007, 8(5):561-580.
  • [19]Tani H, Koshino H, Sakuno E, Nakajima H: Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. J Nat Prod 2005, 68(12):1768-1772.
  • [20]Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H: Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 2006, 69(4):722-725.
  • [21]Dalmais B, Schumacher J, Moraga J, Le Pecheur P, Tudzynski B, Gonzalez Collado I, Viaud M: The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 2011, 12(6):564-579.
  • [22]Shahbazi H, Aminian H, Sahebani N, Halterman D: Effect of Alternaria solani exudates on resistant and susceptible potato cultivars from two different pathogen isolates. Plant Pathol J 2011, 27(1):14-19.
  • [23]Pound GS, Stahmann MA: The production of a toxic material by Alternaria solani and its relation to the early blight disease of tomato. Phytopathology 1951, 41:1104-1114.
  • [24]Langsdorf G, Furuichi N, Doke N, Nishimura S: Investigations on Alternaria solani infections: detection of alternaric acid and a susceptibility-inducing factor in the spore-germination fluid of A. solani. J Phytopathol 1990, 128(4):271-282.
  • [25]Ichihara A, Sakamura S, Tazaki H: Solanapyrones A, B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett 1983, 24(48):5373-5376.
  • [26]Rigano MM, De Guzman G, Walmsley AM, Frusciante L, Barone A: Production of pharmaceutical proteins in solanaceae food crops. Int J Mol Sci 2013, 14(2):2753-2773.
  • [27]ten Have A, van Berloo R, Lindhout P, van Kan JAL: Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. Eur J Plant Pathol 2007, 117(2):153-166.
  • [28]Chaerani R, Groenwold R, Stam P, Voorrips RE: Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. J Gen Plant Pathol 2007, 73(2):96-103.
  • [29]Gianessi L, Reigner N: The importance of fungicides in U.S. crop production. Outlooks on Pest Management 2006, 17(5):209-213.
  • [30]Guimaraes RL, Chetelat RT, Stotz HU: Resistance to Botrytis cinerea in Solanum lycopersicoides is dominant in hybrids with tomato, and involves induced hyphal death. Eur J Plant Pathol 2004, 110(1):13-23.
  • [31]Chetelat RT, Cisneros P, Stamova L, Rick CM: A male-fertile Lycopersicon esculentum x Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 1997, 95(1):99-108.
  • [32]Finkers R, Bai Y, Berg P, Berloo R, Meijer-Dekens F, Have A, Kan J, Lindhout P, Heusden A: Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica 2008, 159(1/2):83-92.
  • [33]Egashira H, Kuwashima A, Ishiguro H, Fukushima K, Kaya T, Imanishi S: Screening of wild accessions resistant to grey mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiol Plant 2000, 22(3):324-326.
  • [34]Canady MA, Meglic V, Chetelat RT: A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 2005, 48(4):685-697.
  • [35]Eshed Y, Zamir D: An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141(3):1147-1162.
  • [36]Blanca J, Cañzares J, Cordero L, Pascual L, Diez MJ, Nuez F: Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 2012, 7(10):1-17.
  • [37]Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O: Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 2011, 7(8):e1002230-e1002230.
  • [38]Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K, Egholm M, Knight J, Bogden R, Li C, Shuang Y, Xu X, Pan S, Cheng S, Liu X, Ren Y, Wang J, Albiero A, Dal Pero F, Todesco S, Van Eck J, Buels RM, Bombarely A, Gosselin JR, Huang M, Leto JA: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641.
  • [39]Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R: The Gene Ontology Annotation (GOA) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Res 2004, 32(Database issue):D262-D266.
  • [40]Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim Y-S, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ: Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 2012, 24(9):3530-3557.
  • [41]De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B: RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 2013, 36(11):1992-2007.
  • [42]Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant 2004, 122(4):419-428.
  • [43]Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere M-P, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M, Molina A: Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 2012, 160(4):2109-2124.
  • [44]Loon LC, Rep M, Pieterse CMJ: Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 2006, 44:135-162.
  • [45]Kamoun S: A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 2006, 44:41-60.
  • [46]AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T: Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 2006, 48(1):28-44.
  • [47]Marrs KA: The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 1996, 47:127-158.
  • [48]Bianchini GM, Paiva NL, Stermer BA: Induction of early mevalonate pathway enzymes and biosynthesis of end products in potato (Solanum tuberosum) tubers by wounding and elicitation. Phytochemistry 1996, 42(6):1563-1571.
  • [49]Ha SH, Kim JB, Hwang YS, Lee SW: Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochim Biophys Acta 2003, 1625(3):253-260.
  • [50]Dubey VS, Bhalla R, Luthra R: An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 2003, 28(5):637-646.
  • [51]Xiao Y, Savchenko T, Baidoo EEK, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 2012, 149(7):1525-1535.
  • [52]Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P: The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant J 2005, 44(1):155-166.
  • [53]Guest D, Brown J: Plant defences against pathogens. In Plant pathogens and plant diseases. Edited by Brown J, Ogle H. Armidale: Rockvale Publications; 1997:263-286.
  • [54]ten Have A, Mulder W, Visser J, van Kan JA: The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 1998, 11(10):1009-1016.
  • [55]Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P: Functional analysis of H (2) O (2)-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 2004, 5(1):17-27.
  • [56]Pinedo C, Wang C-M, Pradier J-M, Dalmais B, Choquer M, Le Pêcheur P, Morgant G, Collado IG, Cane DE, Viaud M: Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol 2008, 3(12):791-801.
  • [57]Wang C-M, Hopson R, Lin X, Cane DE: Biosynthesis of the sesquiterpene botrydial in Botrytis cinerea. Mechanism and stereochemistry of the enzymatic formation of presilphiperfolan-8beta-ol. J Am Chem Soc 2009, 131(24):8360-8361.
  • [58]Zhao L, Qiu C, Li J, Chai Y, Kai G, Li Z, Sun X, Tang KX: Investigation of disease resistance and cold tolerance of Solanum lycopersicoides for tomato improvement. HortSci 2005, 40(1):43-46.
  • [59]Jones JDG, Dangl JL: The plant immune system. Nature 2006, 444(7117):323-329.
  • [60]Lorang JM, Sweat TA, Wolpert TJ: Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci U S A 2007, 104(37):14861-14866.
  • [61]Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL: A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 2010, 107(30):13544-13549.
  • [62]Nagy ED, Lee T-C, Ramakrishna W, Xu Z, Klein PE, SanMiguel P, Cheng C-P, Li J, Devos KM, Schertz K, Dunkle L, Bennetzen JL: Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin. Theor Appl Genet 2007, 114(6):961-970.
  • [63]Edlich W, Lorenz G, Lyr H, Nega E, Pommer EH: New aspects on the infection mechanism of Botrytis cinerea Pers. Neth J Plant Pathol 1989, 95:53-62.
  • [64]Spoel SH, Johnson JS, Dong X: Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 2007, 104(47):18842-18847.
  • [65]Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T: The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 2006, 18(1):257-273.
  • [66]Delaney TP, Uknes S: A central role of salicylic acid in plant disease resistance. Science 1994, 266(5188):1247.
  • [67]Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF: Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 1998, 95(25):15107-15111.
  • [68]Cao H, Glazebrook J, Clarke JD, Volko S, Dong X: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997, 88(1):57-63.
  • [69]Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM: Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 1998, 16(4):473-485.
  • [70]Dempsey DA, Klessig DF, Shah J: Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 1999, 18(4):547-575.
  • [71]Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF: A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 2001, 98(16):9448-9453.
  • [72]Govrin EM, Levine A: Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 2002, 48(3):267-276.
  • [73]Thomma BP, Eggermont K, Tierens KF, Broekaert WF: Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 1999, 121(4):1093-1102.
  • [74]Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B: Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science 1990, 250(4983):1004-1006.
  • [75]Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J: Requirement of salicylic Acid for the induction of systemic acquired resistance. Science 1993, 261(5122):754-756.
  • [76]Kunkel BN, Brooks DM: Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 2002, 5(4):325-331.
  • [77]Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K: Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004, 16(12):3460-3479.
  • [78]Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA: The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 2009, 151(1):290-305.
  • [79]Abuqamar S, Chai M-F, Luo H, Song F, Mengiste T: Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 2008, 20(7):1964-1983.
  • [80]Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T: Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 2009, 58(2):347-360.
  • [81]Zheng Z, Qamar SA, Chen Z, Mengiste T: Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 2006, 48(4):592-605.
  • [82]Mengiste T, Chen X, Salmeron J, Dietrich R: The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 2003, 15(11):2551-2565.
  • [83]Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R: JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 2004, 16(7):1938-1950.
  • [84]Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 2009, 106(19):8067-8072.
  • [85]Nurmberg PL, Knox KA, Yun B-W, Morris PC, Shafiei R, Hudson A, Loake GJ: The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci U S A 2007, 104(47):18795-18800.
  • [86]Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P: An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 2005, 17(7):2123-2137.
  • [87]Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K: The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 2009, 21(8):2237-2252.
  • [88]Dhawan R, Luo H, Foerster AM, Abuqamar S, Du H-N, Briggs SD, Mittelsten Scheid O, Mengiste T: HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 2009, 21(3):1000-1019.
  • [89]Walley JW, Rowe HC, Xiao Y, Chehab EW, Kliebenstein DJ, Wagner D, Dehesh K: The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 2008, 4(12):e1000237-e1000237.
  • [90]Zhou C, Zhang L, Duan J, Miki B, Wu K: HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 2005, 17(4):1196-1204.
  • [91]Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen W-H: Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant Physiol 2010, 154(3):1403-1414.
  • [92]Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell ALT: The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci U S A 2008, 105(3):859-864.
  • [93]Bessire M, Chassot C, Jacquat A-C, Humphry M, Borel S, Petétot JM-C, Métraux J-P, Nawrath C: A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 2007, 26(8):2158-2168.
  • [94]Chassot C, Nawrath C, Métraux J-P: Cuticular defects lead to full immunity to a major plant pathogen. Plant J 2007, 49(6):972-980.
  • [95]Tang D, Simonich MT, Innes RW: Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol 2007, 144(2):1093-1103.
  • [96]Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodríguez C, Anderson LK, Somerville S, Marco Y, Molina A: Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 2007, 19(3):890-903.
  • [97]Rohmer M: The mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids. Pure Appl Chem 1999, 71(12):2279-2284.
  • [98]Stermer BA, Bianchini GM, Korth KL: Regulation of HMG-CoA reductase activity in plants. J Lipid Res 1994, 35(7):1133-1140.
  • [99]Santos CS, Pinheiro M, Silva AI, Egas C, Vasconcelos MW: Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening. BMC Genomics 2012, 13:599-599. BioMed Central Full Text
  • [100]Huth TJ, Place SP: De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. BMC Genomics 2013, 14:805-805. BioMed Central Full Text
  • [101]Olsvik PA, Vikeså V, Lie KK, Hevrøy EM: Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology. BMC Genomics 2013, 14:817-817. BioMed Central Full Text
  • [102]Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB: Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 2013, 14(1):1-12. BioMed Central Full Text
  • [103]Tremblay A, Hosseini P, Li S, Alkharouf NW, Matthews BF: Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing. BMC Genomics 2013, 14:614-614. BioMed Central Full Text
  • [104]de Sio F, Laratta B, Giovane A, Quagliuolo L, Castaldo D, Servillo L: Analysis of free and esterified ergosterol in tomato products. J Agric Food Chem 2000, 48(3):780-784.
  • [105]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [106]Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res 1997, 7(10):986-995.
  • [107]Sturn A, Quackenbush J, Trajanoski Z: Genesis: cluster analysis of microarray data. Bioinformatics 2002, 18(1):207-208.
  • [108]Zdobnov EM, Apweiler R: InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [109]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods 2001, 25(4):402-408.
  • [110]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35(Web Server issue):W182-W185.
  文献评价指标  
  下载次数:0次 浏览次数:0次