期刊论文详细信息
BMC Systems Biology
Efficient parametric analysis of the chemical master equation through model order reduction
Bernard Haasdonk1  Steffen Waldherr2 
[1] Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, Germany;Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, Stuttgart, Germany
关键词: Parameter estimation;    Computational efficiency;    Genetic regulatory network;    Reduced basis;    Model reduction;    Stochastic biochemical network;   
Others  :  1143860
DOI  :  10.1186/1752-0509-6-81
 received in 2012-01-03, accepted in 2012-05-18,  发布年份 2012
PDF
【 摘 要 】

Background

Stochastic biochemical reaction networks are commonly modelled by the chemical master equation, and can be simulated as first order linear differential equations through a finite state projection. Due to the very high state space dimension of these equations, numerical simulations are computationally expensive. This is a particular problem for analysis tasks requiring repeated simulations for different parameter values. Such tasks are computationally expensive to the point of infeasibility with the chemical master equation.

Results

In this article, we apply parametric model order reduction techniques in order to construct accurate low-dimensional parametric models of the chemical master equation. These surrogate models can be used in various parametric analysis task such as identifiability analysis, parameter estimation, or sensitivity analysis. As biological examples, we consider two models for gene regulation networks, a bistable switch and a network displaying stochastic oscillations.

Conclusions

The results show that the parametric model reduction yields efficient models of stochastic biochemical reaction networks, and that these models can be useful for systems biology applications involving parametric analysis problems such as parameter exploration, optimization, estimation or sensitivity analysis.

【 授权许可】

   
2012 Waldherr and Haasdonk; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330022902714.pdf 1616KB PDF download
Figure 8. 25KB Image download
Figure 7. 90KB Image download
Figure 2. 27KB Image download
Figure 5. 38KB Image download
Figure 2. 29KB Image download
Figure 3. 17KB Image download
Figure 2. 40KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 2.

Figure 5.

Figure 2.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Gillespie DT: A rigorous derivation of the chemical master equation. Physica A: Statist Theor Phys 1992, 188(1-3):404-425. [ http://www.sciencedirect.com/science/article/B6TVG-46FX396-7N/2/a0537c1efc0f5c330fa05b5e4ae61b98 webcite]
  • [2]van Kampen NG: Stochastic Processes in Physics and Chemistry. Amsterdam, The Netherlands: North-Holland; 1981.
  • [3]Munsky B, Khammash M: The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 2006, 124(4):044104. [ http://dx.doi.org/10.1063/1.2145882 webcite]
  • [4]Jahnke T, Huisinga W: A Dynamical Low-Rank Approach to the Chemical Master Equation. Bull Math Biol 2008, 70:2283-2302.
  • [5]Hegland M, Hellander A, Lötstedt P: Sparse grids and hybrid methods for the chemical master equation. BIT Numerical Mathematics 2008, 48:265-283.
  • [6]Antoulas AC: Approximation of Large-Scale Dynamical Systems. Philadelphia, USA: SIAM; 2005.
  • [7]Munsky B, Khammash M: The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks. Automatic Control, IEEE Transactions on 2008, 53(Special Issue):201-214.
  • [8]Baur U, Benner P: Parametrische Modellreduktion mit dünnen Gittern. GMA-Fachausschuss 1.30, Modellbildung, Identifizierung und Simulation in der Automatisierungstechnik, Salzburg ISBN 978-3-9502451-3-4 2008, 262-271.
  • [9]Haasdonk B, Ohlberger M: Efficient Reduced Models and A-Posteriori Error Estimation for Parametrized Dynamical Systems by Offline/Online Decomposition. MCMDS, Mathematical and Computer Modelling of Dynamical Systems 2011, 17(2):145-161.
  • [10]Daniel L, Siong O, Chay L, Lee K, White J: Multi-parameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2004, 23(5):678-693.
  • [11]Moosmann C, Rudnyi E, Greiner A, Korvink J, Hornung M: Parameter Preserving Model Order Reduction of a Flow Meter. Technical Proceedings of Nanotech 2005 2005.
  • [12]Higham DJ: Modeling and Simulating Chemical Reactions. SIAM Rev 2008, 50(2):347-368. [ http://link.aip.org/link/?SIR/50/347/1 webcite]
  • [13]Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977, 81(25):2340-2361. [ http://pubs.acs.org/cgibin/abstract.cgi/jpchax/1977/81/i25/f-pdf/f_j100540a008.pdf webcite]
  • [14]Haasdonk B, Ohlberger M: Reduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations. M2AN, Math Model Numer Anal 2008, 42(2):277-302.
  • [15]Eftang JL, Knezevic DJ, Patera AT: An hp Certified Reduced Basis Method for Parametrized Parabolic Partial Differential Equations. MCMDS, Mathematical and Computer Modelling of Dynamical Systems 2011, 17(4):395-422.
  • [16]Knezevic D, Patera A: A Certified Reduced Basis Method for the Fokker-Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow. SIAM Journal of Scientific Computing 2010, 32(2):793-817.
  • [17]Volkwein S: Model Reduction using Proper Orthogonal Decomposition. 2011. [ http://www.uni-graz.at/imawww/volkwein/publist.html webcite]. [Lecture Notes, University of Constance]
  • [18]Jolliffe IT: Principal Component Analysis. New York, USA: Springer-Verlag; 2002.
  • [19]Haasdonk B: Convergence Rates of the POD-Greedy Method. 2011. Simtech preprint 2011-23, University of Stuttgart, Germany
  • [20]Haasdonk B, Dihlmann M, Ohlberger M: A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space. MCMDS, Mathematical and Computer Modelling of Dynamical Systems 2011, 17(4):423-442.
  • [21]Wu J, Vidakovic B, Voit EO: Constructing stochastic models from deterministic process equations by propensity adjustment. BMC Syst Biol 2011, 5:187. [ http://dx.doi.org/10.1186/1752-0509-5-187 webcite] BioMed Central Full Text
  • [22]Barrault M, Maday Y, Nguyen N, Patera A: An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris Series I 2004, 339:667-672.
  • [23]Waldherr S, Wu J, Allgöwer F: Bridging time scales in cellular decision making with a stochastic bistable switch. BMC Syst Biol 2010, 4:108. [ http://www.biomedcentral.com/1752-0509/4/108 webcite] BioMed Central Full Text
  • [24]El-Samad H, Khammash M: Coherence resonance: a mechanism for noise induced stable oscillations in gene regulatory networks. In Proc. of the 45th Conf. Dec. Contr. (CDC). San Diego, USA; 2006:2382-2387.
  • [25]Hasenauer J, Löhning M, Khammash M, Allgöwer F: Dynamical optimization using reduced order models: A method to guarantee performance. 2012. [Journal of Process Control, Online Publication before print]
  文献评价指标  
  下载次数:127次 浏览次数:28次