期刊论文详细信息
BMC Pulmonary Medicine
Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation
Morten A Karsdal2  Diana J Leeming2  Arkadiusz Nawrocki1  Martin R Larsen1  Lloyd B Klickstein4  Meilan Han3  Cory M Hogaboam3  Fernando J Martinez3  Qinlong Zheng6  Yaguo Wang6  Quoc Hai Trieu Nguyen2  Rikke E Clausen2  Helene Skjøt-Arkil5 
[1] Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark;Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark;Division of Pulmonary and Critical Care Medicine and Department of Pathology, University of Michigan, Ann Arbor, MI, USA;Novartis Institutes for Biomedical Research, Cambridge, MA, USA;Institute of Clinical Research, Odense University Hospital, Odense, Denmark;Nordic Bioscience Beijing, Beijing, China
关键词: MMP;    IPF;    COPD;    Neoepitope;    Biochemical marker;    Extracellular matrix remodeling;    Elastin;   
Others  :  1161085
DOI  :  10.1186/1471-2466-12-34
 received in 2012-01-03, accepted in 2012-07-03,  发布年份 2012
PDF
【 摘 要 】

Background

Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases.

Methods

Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11).

Results

The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p < 0.001) and 124% higher in IPF patients (p < 0.0001) compared with controls. ELN-441 had better diagnostic value in COPD patients (AUC 97%, p = 0.001) than in IPF patients (AUC 90%, p = 0.0001). The odds ratios for differentiating controls from COPD or IPF were 24 [2.06–280] for COPD and 50 [2.64–934] for IPF.

Conclusions

MMP-9 and -12 time-dependently released the ELN-441 epitope from elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings.

【 授权许可】

   
2012 Skjøt-Arkil et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150412021051882.pdf 968KB PDF download
Figure 4. 21KB Image download
Figure 3. 20KB Image download
Figure 2. 29KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jakob A, Unger S, Arnold R, Grohmann J, Kraus C, Schlensak C, et al.: A family with a new elastin gene mutation: broad clinical spectrum, including sudden cardiac death. Cardiol Young 2011, 21:62-65.
  • [2]Milewicz DM, Urban Z, Boyd C: Genetic disorders of the elastic fiber system. Matrix Biol 2000, 19:471-480.
  • [3]Kielty CM: Elastic fibres in health and disease. Expert Rev Mol Med 2006, 8:1-23.
  • [4]Kielty CM, Sherratt MJ, Shuttleworth CA: Elastic fibres. J Cell Sci 2002, 115:2817-2828.
  • [5]Petersen E, Gineitis A, Wagberg F, Angquist KA: Serum levels of elastin-derived peptides in patients with ruptured and asymptomatic abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2001, 22:48-52.
  • [6]Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, et al.: Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 1999, 340(Pt 1):171-181.
  • [7]Kielty CM, Woolley DE, Whittaker SP, Shuttleworth CA: Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Lett 1994, 351:85-89.
  • [8]Jacob MP, Wei SM, Ghuysen-Itard A, Fulop T, Robert L: Elastin and arteriosclerosis: determination and characterization of elastin peptides in blood. C R Seances Soc Biol Fil 1992, 186:342-348.
  • [9]Dillon TJ, Walsh RL, Scicchitano R, Eckert B, Cleary EG, McLennan G: Plasma elastin-derived peptide levels in normal adults, children, and emphysematous subjects. Physiologic and computed tomographic scan correlates. Am Rev Respir Dis 1992, 146:1143-1148.
  • [10]Schriver EE, Davidson JM, Sutcliffe MC, Swindell BB, Bernard GR: Comparison of elastin peptide concentrations in body fluids from healthy volunteers, smokers, and patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1992, 145:762-766.
  • [11]Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY: Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 2000, 23:320-326.
  • [12]Desai B, Mattson J, Paintal H, Nathan M, Shen F, Beaumont M, et al.: Differential expression of monocyte/macrophage- selective markers in human idiopathic pulmonary fibrosis. Exp Lung Res 2011, 37:227-238.
  • [13]Selman M, King TE, Pardo A: Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001, 134:136-151.
  • [14]Luisetti M, Ma S, Iadarola P, Stone PJ, Viglio S, Casado B, et al.: Desmosine as a biomarker of elastin degradation in COPD: current status and future directions. Eur Respir J 2008, 32:1146-1157.
  • [15]Marciniak SJ, Lomas DA: What can naturally occurring mutations tell us about the pathogenesis of COPD? Thorax 2009, 64:359-364.
  • [16]Joos L, He JQ, Shepherdson MB, Connett JE, Anthonisen NR, Pare PD, et al.: The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 2002, 11:569-576.
  • [17]Luisetti M, Stolk J, Iadarola P: Desmosine, a biomarker for COPD: old and in the way. Eur Respir J 2012, 39:797-798.
  • [18]Huang JT, Chaudhuri R, Albarbarawi O, Barton A, Grierson C, Rauchhaus P, et al.: Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease. Thorax 2012, 67:502-508.
  • [19]Karsdal MA, Henriksen K, Leeming DJ, Mitchell P, Duffin K, Barascuk N, et al.: Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers 2009, 14:181-202.
  • [20]Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC: Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers–are they the cause or the consequence of the disease? Clin Biochem 2010, 43:793-804.
  • [21]Karsdal MA, Delvin E, Christiansen C: Protein fingerprints–relying on and understanding the information of serological protein measurements. Clin Biochem 2011, 44:1278-1279.
  • [22]Veidal SS, Vassiliadis E, Barascuk N, Zhang C, Segovia-Silvestre T, Klickstein L, et al.: Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis. Liver Int 2010, 30:1293-1304.
  • [23]Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, et al.: A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 2010, 43:899-904.
  • [24]Bay-Jensen AC, Liu Q, Byrjalsen I, Li Y, Wang J, Pedersen C, et al.: Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM-Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 2011, 44:423-429.
  • [25]Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, et al.: Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 2008, 58:2420-2431.
  • [26]Skjot-Arkil H, Barascuk N, Register T, Karsdal MA: Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers. Assay Drug Dev Technol 2010, 8:542-552.
  • [27]Starcher BC, Galione MJ: Purification and comparison of elastins from different animal species. Anal Biochem 1976, 74:441-447.
  • [28]Partridge SM, Davis HF, Dair GS: The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin. Biochem J 1955, 61:11-21.
  • [29]Thingholm TE, Larsen MR: The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests. Methods Mol Biol 2009, 527:57-66. xi
  • [30]Combet C, Blanchet C, Geourjon C, Deleage G: NPS@: network protein sequence analysis. Trends Biochem Sci 2000, 25:147-150.
  • [31]Gefter ML, Margulies DH, Scharff MD: A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somat Cell Genet 1977, 3:231-236.
  • [32]Warming L, Hassager C, Christiansen C: Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 2002, 13:105-112.
  • [33]Mouritzen U, Christgau S, Lehmann HJ, Tanko LB, Christiansen C: Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis 2003, 62:332-336.
  • [34]Taddese S, Weiss AS, Jahreis G, Neubert RH, Schmelzer CE: In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biol 2009, 28:84-91.
  • [35]Taddese S, Weiss AS, Neubert RH, Schmelzer CE: Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biol 2008, 27:420-428.
  • [36]Heinz A, Jung MC, Duca L, Sippl W, Taddese S, Ihling C, et al.: Degradation of tropoelastin by matrix metalloproteinases–cleavage site specificities and release of matrikines. FEBS J 2010, 277:1939-1956.
  • [37]Paulissen G, Rocks N, Gueders MM, Crahay C, Quesada-Calvo F, Bekaert S, et al.: Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir Res 2009, 10:127. BioMed Central Full Text
  • [38]Madsen SH, Sumer EU, Bay-Jensen AC, Sondergaard BC, Qvist P, Karsdal MA: Aggrecanase- and matrix metalloproteinase-mediated aggrecan degradation is associated with different molecular characteristics of aggrecan and separated in time ex vivo. Biomarkers 2010, 15:266-276.
  • [39]Karsdal MA, Madsen SH, Sumer EU, Wulf H, Christiansen C, Sondergaard BC: Induction of increased cAMP levels in articular chondrocytes bloks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanases-mediated cartilage degradation. Arthritis Rheum 2007, 56:1549-1558.
  • [40]Barroso B, Abello N, Bischoff R: Study of human lung elastin degradation by different elastases using high-performance liquid chromatography/mass spectrometry. Anal Biochem 2006, 358:216-224.
  • [41]Senior RM, Griffin GL, Mecham RP: Chemotactic activity of elastin-derived peptides. J Clin Invest 1980, 66:859-862.
  • [42]Senior RM, Griffin GL, Mecham RP, Wrenn DS, Prasad KU, Urry DW: Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 1984, 99:870-874.
  • [43]Ma S, Lieberman S, Turino GM, Lin YY: The detection and quantitation of free desmosine and isodesmosine in human urine and their peptide-bound forms in sputum. Proc Natl Acad Sci U S A 2003, 100:12941-12943.
  • [44]Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, et al.: Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 2006, 116:753-759.
  • [45]He J, Turino GM, Lin YY: Characterization of peptide fragments from lung elastin degradation in chronic obstructive pulmonary disease. Exp Lung Res 2010, 36:548-557.
  • [46]Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al.: Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007, 13:567-569.
  • [47]Finlay GA, O'Driscoll LR, Russell KJ, D'Arcy EM, Masterson JB, Fitzgerald MX, et al.: Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 1997, 156:240-247.
  • [48]Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD: Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997, 277:2002-2004.
  • [49]Filippov S, Caras I, Murray R, Matrisian LM, Chapman HA Jr, Shapiro S, et al.: Matrilysin-dependent elastolysis by human macrophages. J Exp Med 2003, 198:925-935.
  • [50]Atkinson JJ, Lutey BA, Suzuki Y, Toennies HM, Kelley DG, Kobayashi DK, et al.: The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema. Am J Respir Crit Care Med 2011, 183:876-884.
  • [51]Tzortzaki EG, Lambiri I, Vlachaki E, Siafakas NM: Biomarkers in COPD. Curr Med Chem 2007, 14:1037-1048.
  • [52]Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R: Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax 2008, 63:1058-1063.
  • [53]Franciosi LG, Page CP, Celli BR, Cazzola M, Walker MJ, Danhof M, et al.: Markers of disease severity in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2006, 19:189-199.
  文献评价指标  
  下载次数:24次 浏览次数:32次