期刊论文详细信息
BMC Evolutionary Biology
Evolution of lysine acetylation in the RNA polymerase II C-terminal domain
John A Capra2  Melanie Ott3  Benoit G Bruneau3  Daniel He3  Sebastian Schröder3  Katherine S Pollard1  Corinne N Simonti4 
[1] Department of Epidemiology & Biostatistics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94158, CA, USA;Departments of Biological Sciences and Biomedical Informatics, Vanderbilt University, Nashville 37232, TN, USA;Gladstone Institutes, University of California, San Francisco, San Francisco 94158, CA, USA;Center for Human Genetics Research, Vanderbilt University, Nashville 37232, TN, USA
关键词: Phylogenetics;    Metazoa;    Posttranslational modification;    RNA pol II acetylation;    Heptad repeats;    RNA pol II C-terminal domain;   
Others  :  1158292
DOI  :  10.1186/s12862-015-0327-z
 received in 2014-11-24, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes.

Results

To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates.

Conclusions

Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals.

【 授权许可】

   
2015 Simonti et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150408012648352.pdf 962KB PDF download
Figure 5. 79KB Image download
Figure 4. 42KB Image download
Figure 3. 93KB Image download
Figure 2. 71KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Stiller JW, Cook MS: Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot Cell 2004, 3(3):735-40.
  • [2]Cramer P, Bushnell DA, Kornberg RD: Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution. Science 2001, 292(5523):1863-76.
  • [3]Eick D, Geyer M: The RNA polymerase II carboxy-terminal domain (CTD) code. Chem Rev 2013, 113(11):8456-90.
  • [4]Corden JL: RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013, 113(11):8423-55.
  • [5]Egloff S, Dienstbier M, Murphy S: Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet: TIG 2012, 28(7):333-41.
  • [6]Phatnani HP, Greenleaf AL: Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006, 20(21):2922-36.
  • [7]Komarnitsky P, Cho E-J, Buratowski S: Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000, 14:2452-60.
  • [8]Fujita T, Ryser S, Tortola S, Piuz I, Schlegel W: Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells. Nucleic Acids Res 2007, 35(3):1007-17.
  • [9]Egloff S, O’Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, et al.: Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene Expression. Science 2007, 318(5857):1777-9.
  • [10]Baillat D, Hakimi M-A, Näär AM, Shilatifard A, Cooch N, Shiekhattar R: Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005, 123(2):265-76.
  • [11]Sims RJ, Rojas LA, Beck D, Bonasio R, Schüller R, Drury WJ, et al.: The C-terminal domain of rna polymerase II Is modified by site-specific methylation. Science 2011, 332(6025):99-103.
  • [12]Hsin J-P, Sheth A, Manley JL: RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 2011, 334(6056):683-6.
  • [13]Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, et al.: CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012, 336(6089):1723-5.
  • [14]Hsin JP, Li W, Hoque M, Tian B, Manley JL: RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. ELife 2014, 3:e02112.
  • [15]Descostes N, Heidemann M, Spinelli L, Schüller R, Maqbool MA, Fenouil R, et al.: Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife 2014, 3:e02105.
  • [16]Yang C, Stiller JW: Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 2014, 111(16):5920-5.
  • [17]Liu P, Kenney JM, Stiller JW, Greenleaf AL: Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol Biol Evol 2010, 27(11):2628-41.
  • [18]Chapman RD, Conrad M, Eick D: Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Mol Cell Biol 2005, 25(17):7665-74.
  • [19]Gerber H-P, Hagmann M, Seipel K, Georgiev O, West MAL, Litingtung Y, et al.: RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 1995, 374(6523):660-2.
  • [20]Schroder S, Herker E, Itzen F, He D, Thomas S, Gilchrist DA, et al.: Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol Cell 2013, 52(3):314-24.
  • [21]Capra JA, Stolzer M, Durand D, Pollard KS: How old is my gene? Trends Genet: TIG 2013, 29(11):659-68.
  • [22]Capra JA, Williams AG, Pollard KS: ProteinHistorian: Tools for the comparative analysis of eukaryote protein origin. PLoS Comput Biol 2012, 8(6):e1002567.
  • [23]Kishore SP, Perkins SL, Templeton TJ, Deitsch KW: An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. J Mol Evol 2009, 68(6):706-14.
  • [24]Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I: Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2011, 28(3):1241-54.
  • [25]Bordoli L, Netsch M, Luthi U, Lutz W, Eckner R: Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res 2001, 29(3):589-97.
  • [26]Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, et al.: New nomenclature for chromatin-modifying enzymes. Cell 2007, 131(4):633-6.
  • [27]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [28]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [29]Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, et al.: A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007, 39(4):503-12.
  • [30]Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM: Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 2007, 282(33):23981-95.
  • [31]Rokas A: The molecular origins of multicellular transitions. Curr Opin Genet Dev 2008, 18(6):472-8.
  • [32]Rokas A: The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 2008, 42:235-51.
  • [33]Shilo B-Z: Regulating the dynamics of EGF receptor signaling in space and time. Development 2005, 132(18):4017-27.
  • [34]Adelman K, Lis JT: Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012, 13(10):720-31.
  • [35]Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ: Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. ELife 2013, 2:e00808.
  • [36]Richter DJ, King N: The genomic and cellular foundations of animal origins. Annu Rev Genet 2013, 47:509-37.
  • [37]Kishore SP, Stiller JW, Deitsch KW: Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans. BMC Evol Biol 2013, 13:37. BioMed Central Full Text
  • [38]Stiller JW, Hall BD: Evolution of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 2002, 99(9):6091-6.
  • [39]Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 2006, 22(23):2971-2.
  • [40]Csuros M: Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010, 26(15):1910-2.
  • [41]Yu Y-K, Capra JA, Stojmirović A, Landsman D, Altschul SF: Log-odds sequence logos. Bioinformatics 2015, 31(3):324-31.
  • [42]Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [43]Smyth GK: Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat Appl Genet Mol Biol 2004, 3(1):1-25. ISSN (Online) 1544-6115, doi:10.2202/1544-6115.1027
  • [44]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995, 57(1):289-300.
  文献评价指标  
  下载次数:73次 浏览次数:10次