期刊论文详细信息
BMC Structural Biology
PcrG protects the two long helical oligomerization domains of PcrV, by an interaction mediated by the intramolecular coiled-coil region of PcrG
Saumen Datta1  Supratim Dey1  Urmisha Das1  Abhishek Basu1 
[1] Structural Biology and Bioinformatics division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032 West Bengal, India
关键词: Molecular docking;    Surface plasmon resonance and protein-protein interaction;    Deletion mutants;    Intramolecular coiled-coil;    Reversal of oligomerization;    MS/MS sequence analysis;    Protease protected fragment;    Homology model;    Dynamic light scattering and elongated conformation;    Functional translocon;    Regulation of TTSS;   
Others  :  793253
DOI  :  10.1186/1472-6807-14-5
 received in 2013-09-25, accepted in 2014-01-17,  发布年份 2014
PDF
【 摘 要 】

Background

PcrV is a hydrophilic translocator of type three secretion system (TTSS) and a structural component of the functional translocon. C-terminal helix of PcrV is essential for its oligomerization at the needle tip. Conformational changes within PcrV regulate the effector translocation. PcrG is a cytoplasmic regulator of TTSS and forms a high affinity complex with PcrV. C-terminal residues of PcrG control the effector secretion.

Result

Both PcrV and PcrG-PcrV complex exhibit elongated conformation like their close homologs LcrV and LcrG-LcrV complex. The homology model of PcrV depicts a dumbbell shaped structure with N and C-terminal globular domains. The grip of the dumbbell is formed by two long helices (helix-7 and 12), which show high level of conservation both structurally and evolutionary. PcrG specifically protects a region of PcrV extending from helix-12 to helix-7, and encompassing the C-terminal globular domain. This fragment ∆PcrV(128–294) interacts with PcrG with high affinity, comparable to the wild type interaction. Deletion of N-terminal globular domain leads to the oligomerization of PcrV, but PcrG restores the monomeric state of PcrV by forming a heterodimeric complex. The N-terminal globular domain (∆PcrV(1–127)) does not interact with PcrG but maintains its monomeric state. Interaction affinities of various domains of PcrV with PcrG illustrates that helix-12 is the key mediator of PcrG-PcrV interaction, supported by helix-7. Bioinformatic analysis and study with our deletion mutant ∆PcrG(13–72) revealed that the first predicted intramolecular coiled-coil domain of PcrG contains the PcrV interaction site. However, 12 N-terminal amino acids of PcrG play an indirect role in PcrG-PcrV interaction, as their deletion causes 40-fold reduction in binding affinity and changes the kinetic parameters of interaction. ∆PcrG(13–72) fits within the groove formed between the two globular domains of PcrV, through hydrophobic interaction.

Conclusion

PcrG interacts with PcrV through its intramolecular coiled-coil region and masks the domains responsible for oligomerization of PcrV at the needle tip. Also, PcrG could restore the monomeric state of oligomeric PcrV. Therefore, PcrG prevents the premature oligomerization of PcrV and maintains its functional state within the bacterial cytoplasm, which is a pre-requisite for formation of the functional translocon.

【 授权许可】

   
2014 Basu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705045259378.pdf 2975KB PDF download
Figure 8. 127KB Image download
Figure 7. 59KB Image download
Figure 6. 74KB Image download
Figure 5. 57KB Image download
Figure 4. 80KB Image download
Figure 3. 58KB Image download
Figure 2. 105KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Giamarellou H: Therapeutic guidelines for Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2000, 16:103-106.
  • [2]Lyczak JB, Cannon CL, Pier GB: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000, 2:1051-1060.
  • [3]Hauser AR: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev 2009, 7:654-665.
  • [4]Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP: Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 2001, 183:1767-1774.
  • [5]Galán JE, Wolf-Watz H: Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006, 444:567-573.
  • [6]Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006, 4:811-825.
  • [7]Cornelis GR: The type III secretion system tip complex and translocon. Mol Microbiol 2008, 68:1085-1095.
  • [8]Frithz-Lindsten E, Holmström A, Jacobsson L, Soltani M, Olsson J, Rosqvist R, Forsberg A: Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis. Mol Microbiol 1998, 29:1155-1165.
  • [9]Håkansson S, Schesser K, Persson C, Galyov EE, Rosqvist R, Homblé F, Wolf-Watz H: The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 1996, 15:5812-5823.
  • [10]Neyt C, Cornelis GR: Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 1999, 33:971-981.
  • [11]Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I: The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 2004, 72:4741-4750.
  • [12]Goure J, Broz P, Attree O, Cornelis GR, Attree I: Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J Infect Dis 2005, 192:218-225.
  • [13]Lee PC, Stopford CM, Svenson AG, Rietsch A: Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol 2010, 75:924-941.
  • [14]Nanao M, Ricard-Blum S, Di Guilmi AM, Lemaire D, Lascoux D, Chabert J, Attree I, Dessen A: Type III secretion proteins PcrV and PcrG from Pseudomonas aeruginosa form a 1:1 complex through high affinity interactions. BMC Microbiol 2003, 3:21.
  • [15]Gébus C, Faudry E, Bohn YS, Elsen S, Attree I: Oligomerization of PcrV and LcrV, protective antigens of Pseudomonas aeruginosa and Yersinia pestis. J Biol Chem 2008, 283:23940-23949.
  • [16]Sato H, Hunt ML, Weiner JJ, Hansen AT, Frank DW: Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa. PLoS One 2011, 6:e18356.
  • [17]Pallen MJ, Beatson SA, Bailey CM: Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 2005, 29:201-229.
  • [18]Troisfontaines P, Cornelis GR: Type III secretion: more systems than you think. Physiology (Bethesda) 2005, 20:326-339.
  • [19]Sato H, Frank DW: Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein. PcrV; Comparison to Orthologs in other Gram-negative Bacteria. Front Microbiol 2011, 2:142.
  • [20]Espina M, Ausar SF, Middaugh CR, Baxter MA, Picking WD, Picking WL: Conformational stability and differential structural analysis of LcrV, PcrV, BipD, and SipD from type III secretion systems. Protein Sci 2007, 16:704-714.
  • [21]Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS: The structure of yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 2004, 12:301-306.
  • [22]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protocol 2010, 5:725-738.
  • [23]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008, 9:40.
  • [24]Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst 1993, 26:283-291.
  • [25]Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR: Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 2007, 65:1311-1320.
  • [26]Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010, 38(Web Server issue):W529-W533.
  • [27]Corpet F: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988, 16:10881-10890.
  • [28]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [29]Lawton DG, Longstaff C, Wallace BA, Hill J, Leary SEC, Titball RW, Brown KA: Interactions of the type III secretion pathway proteins LcrV and LcrG from Yersinia pestis are mediated by coiled-coil domains. J Biol Chem 2002, 277:38714-38722.
  • [30]Nilles ML: Dissecting the Structure of LcrV from Yersinia pestis, a Truly Unique virulence Protein. Structure 2004, 12:357.
  • [31]Ishida T, Kinoshita K: PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 2007, 35(Web Server issue):W460-W464.
  • [32]Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB: Protein disorder prediction: implications for structural proteomics. Structure 2003, 11:1453-1459.
  • [33]Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004, 337:635-645.
  • [34]Lupas A: Prediction and analysis of coiled-coil structures. Methods Enzymol 1996, 266:513-525.
  • [35]Matson JS, Nilles ML: Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface. BMC Microbiol 2002, 2:16.
  • [36]Pierce BG, Hourai Y, Weng Z: Accelerating Protein Docking in ZDOCK Using an Advanced 3D Convolution Library. PLoS One 2011, 6:e24657.
  • [37]Shen A, Lupardus PJ, Morell M, Ponder EL, Sadaghiani AM, Garcia KC, Bogyo M: Simplified, enhanced protein purification using an inducible. Autoprocessing enzyme tag. PLoS One 2009, 4:e8119.
  • [38]The PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC http://www.PyMOL.org webcite
  • [39]Jmol: an open-source Java viewer for chemical structures in 3D http://www.jmol.org/ webcite
  • [40]Mascot Server http://www.matrixscience.com webcite
  文献评价指标  
  下载次数:49次 浏览次数:47次