期刊论文详细信息
BMC Research Notes
Influenza B virus has global ordered RNA structure in (+) and (−) strands but relatively less stable predicted RNA folding free energy than allowed by the encoded protein sequence
Douglas H Turner1  Walter N Moss1  Salvatore F Priore1 
[1]Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY 14627-0216, USA
关键词: GORS;    Structural bioinformatics;    Influenza B;    Influenza A;    Influenza;    RNA secondary structure;    RNA;   
Others  :  1141851
DOI  :  10.1186/1756-0500-6-330
 received in 2013-01-15, accepted in 2013-07-03,  发布年份 2013
PDF
【 摘 要 】

Background

Influenza A virus contributes to seasonal epidemics and pandemics and contains Global Ordered RNA structure (GORS) in the nucleoprotein (NP), non-structural (NS), PB2, and M segments. A related virus, influenza B, is also a major annual public health threat, but unlike influenza A is very selective to human hosts. This study extends the search for GORS to influenza B.

Findings

A survey of all available influenza B sequences reveals GORS in the (+) and (−)RNAs of the NP, NS, PB2, and PB1 gene segments. The results are similar to influenza A, except GORS is observed for the M1 segment of influenza A but not for PB1. In general, the folding free energies of human-specific influenza B RNA segments are less stable than allowable by the encoded amino acid sequence. This is consistent with findings in influenza A, where human-specific influenza RNA folds are less stable than avian and swine strains.

Conclusions

These results reveal fundamental molecular similarities and differences between Influenza A and B and suggest a rational basis for choosing segments to target with therapeutics and for viral attenuation for live vaccines by altering RNA folding stability.

【 授权许可】

   
2013 Priore et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327151732338.pdf 634KB PDF download
Figure 3. 44KB Image download
Figure 2. 28KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Osterhaus AD, Rimmelzwaan GF, Martina BE, Bestebroer TM, Fouchier RA: Influenza B virus in seals. Science 2000, 288:1051-1053.
  • [2]Geraci JR, St Aubin DJ, Barker IK, Webster RG, Hinshaw VS, Bean WJ, Ruhnke HL, Prescott JH, Early G, Baker AS, et al.: Mass mortality of harbor seals: pneumonia associated with influenza A virus. Science 1982, 215:1129-1131.
  • [3]Hay AJ, Gregory V, Douglas AR, Lin YP: The evolution of human influenza viruses. Phil Trans R Soc Lond B Biol Sci 2001, 356:1861-1870.
  • [4]Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB: The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 2007, 25:5086-5096.
  • [5]Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K: Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 2003, 289:179-186.
  • [6]Lee BY, Bartsch SM, Willig AM: The economic value of a quadrivalent versus trivalent influenza vaccine. Vaccine 2012, 30:7443-7446.
  • [7]Ambrose CS, Levin MJ: The rationale for quadrivalent influenza vaccines. Hum Vaccin Immunother 2012, 8:81-88.
  • [8]Bouvier NM, Palese P: The biology of influenza viruses. Vaccine 2008, 26(Suppl 4):D49-D53.
  • [9]Pfingsten JS, Kieft JS: RNA structure-based ribosome recruitment: lessons from the Dicistroviridae intergenic region IRESes. RNA 2008, 14:1255-1263.
  • [10]Warf MB, Berglund JA: Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010, 35:169-178.
  • [11]Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA: Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science 2010, 330:1244-1247.
  • [12]Steitz JA, Borah S, Cazalla D, Fok V, Lytle R, Mitton-Fry R, Riley K, Samji T: Noncoding RNPs of viral origin. Cold Spring Harb Perspect Biol 2011, 3:a005165.
  • [13]Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J: A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res 2004, 32:4925-4936.
  • [14]Ilyinskii PO, Schmidt T, Lukashev D, Meriin AB, Thoidis G, Frishman D, Shneider AM: Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS 2009, 13:421-430.
  • [15]Gultyaev AP, Heus HA, Olsthoorn RC: An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 2007, 23:272-276.
  • [16]Gultyaev AP, Olsthoorn RC: A family of non-classical pseudoknots in influenza A and B viruses. RNA Biol 2010, 7:125-129.
  • [17]Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 2005, 102:2454-2459.
  • [18]Moss WN, Priore SF, Turner DH: Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 2011, 17:991-1011.
  • [19]Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH: The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS One 2012, 7:e38323.
  • [20]Priore SF, Moss WN, Turner DH: Influenza A virus coding regions exhibit host-specific global ordered RNA structure. PLoS One 2012, 7:e35989.
  • [21]Clote P, Ferre F, Kranakis E, Krizanc D: Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 2005, 11:578-591.
  • [22]Sperschneider J, Datta A: An introduction to RNA structure and pseudoknot prediction. In Algorithms in Computational Molecular Biology. John Wiley & Sons, Inc; 2011:521-546.
  • [23]Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004, 101:7287-7292.
  • [24]Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999, 288:911-940.
  • [25]Simmonds P, Tuplin A, Evans DJ: Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: implications for virus evolution and host persistence. RNA 2004, 10:1337-1351.
  • [26]Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P: Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 2008, 82:11824-11836.
  • [27]Katz L, Burge CB: Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res 2003, 13:2042-2051.
  • [28]Deutscher MP: Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 2006, 34:659-666.
  • [29]Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D: The influenza virus resource at the national center for biotechnology information. J Virol 2008, 82:596-601.
  • [30]Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P: Fast folding and comparison of RNA secondary structures. Monatsh Chem 1994, 125:167-188.
  • [31]Simmonds P, Smith DB: Structural constraints on RNA virus evolution. J Virol 1999, 73:5787-5794.
  • [32]Simmonds P: SSE: a nucleotide and amino acid sequence analysis platform. BMC Res Notes 2012, 5:50. BioMed Central Full Text
  • [33]Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP: Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 2011, 108:11063-11068.
  • [34]Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E: Genome-wide measurement of RNA secondary structure in yeast. Nature 2010, 467:103-107.
  • [35]Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D: FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Meth 2010, 7:995-1001.
  • [36]Powell ML, Napthine S, Jackson RJ, Brierley I, Brown TD: Characterization of the termination-reinitiation strategy employed in the expression of influenza B virus BM2 protein. RNA 2008, 14:2394-2406.
  • [37]Horvath CM, Williams MA, Lamb RA: Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. EMBO J 1990, 9:2639-2647.
  • [38]Greenbaum BD, Levine AJ, Bhanot G, Rabadan R: Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 2008, 4:e1000079.
  • [39]Rabadan R, Levine AJ, Robins H: Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J Virol 2006, 80:11887-11891.
  • [40]Wanitchang A, Narkpuk J, Jaru-ampornpan P, Jengarn J, Jongkaewwattana A: Inhibition of influenza A virus replication by influenza B virus nucleoprotein: an insight into interference between influenza A and B viruses. Virology 2012, 432:194-203.
  文献评价指标  
  下载次数:12次 浏览次数:6次